
(Too much)
Access Points

-
Exploitation Roundup

Cristofaro MuneCONFidence 2010

Take Off

Me
 Cristofaro Mune

- Independent Security Researcher

- Preferably focused on Mobile and Embedded Security

 In the Past

- Security Research Lead @ Mobile Security Lab (www.mseclab.com)

- Various consulting works on Mobile & IT security

 Previous works

- Mune, Gassirà, Piccirillo - “Hijacking Mobile Data Connections” -
BlackHat Europe ‟09

- Mune, Gassirà, Piccirillo – “Hijacking Mobile Data Connections 2.0:
Automated and Improved” - Deepsec 2009

http://www.mseclab.com/

Talk Goals

 Demonstrate arbitrary code execution on Access Points from
multiple Vendors

- Platform: Linux/MIPS

 Demonstrate a blind remote attack scenario:

- Exploitation achieved by “reflection” by “Browser-in-the-Middle”

 Release many previously undisclosed vulnerabilities

- Hoping to stimulate Vendor response and, hopefully, have them FINALLY
fixed

Recognition

Embedded networking devices

 RISC processors:

- MIPS/ARM (both little and big endian)

- Lower consumption

 Low resources:

- RAM: Typically 4/64 Mbytes

- Flash: 2/16 Mbytes

 Several Open source distributions

- eg: DD-WRT, OpenWRT,...

 Linux/MIPS quite common pair

Access Points

Internet

Not directly reachable from the Internet…

 Even simpler Hardware

 Stripped down software

 Usually located in LAN

- Private IP addressing

Really…!?

…in the Enterprise

 Larger number of
devices

 Monocultures

Internet

Typical …

 Attack avenues:

- Weak admin credentials

- Web interface vulnerabilities

• Auth bypass, Command injection, XSS, XSRF,…

- UPNP

- Wireless related attacks

 ...and goals:

- Access/enable remote management:

• Web interface or network services (FTP, SSH, Telnet, SNMP)

- DNS manipulation

- Wireless passphrases extraction

- Modified firmware upload

AP or Linux/MIPS specific works

 Papers:

- Laurent Butti - “Wi-Fi Advanced Fuzzing” – BlackHat Europe 2007

- Julien Tinnes – “Linux MIPS ELF reverse engineering tips”

- ...more in Reference section

 Binary exploits:

- ???

- Be patient 

 Shellcoding:

- Linux/MIPS LE port bind shellcode – 276 bytes

- Linux/MIPS LE execve shellcode – 60 bytes

- Joshua Drake – “shell_reverse_tcp” (BE and LE) – Metasploit payload

- Julien Tinnes – “MIPSLE XOR Encoder” – Metasploit encoder

AP exploitation advantages

 Stealthiness:

- Poor management/monitoring

- Interesting “hiding place”

 Full access to remote wireless networks

- Remote extraction of Hidden SSIDs, Keys

- At the choke point of wireless networks traffic

 Foothold/jumppad in the Internal network

- Do you protect FROM your AP?

 Enterprises

- Monocultures

 Botnets

• “One vuln to rule them all..”
• “Infective” 0wnage (worm-like exploitation)

Refining target

 Stock firmwares most interesting target for attacker

 Which entry point?:

- Wi-Fi:

• Pro: Wi-Fi drivers vuln may lead to kernel level exploitation

• Con: Requires being in the range of the wireless signal

• Con: Auth required for accessing IP stack and services

- Ethernet:

• Pro: Does not require target proximity.

• Pro: IP stack and network services directly accessible

• Pro: any vuln may be present on wireless “side” also (possibly after auth)

• Con: Private IP addressing may not allow direct IP reachability

Setting goals…

 Primary:

- Execution of arbitrary code on APs loaded with stock firmware

- Exploitation shall not require target proximity

Can this be done?
At which extent??

 Secondary:

- Exploitation should not depend upon authentication

- Exploitation should be possible for not “directly IP-reachable” targets

Aiming:
Choosing Weapon

By distance…

 Local attacks

- Physical interaction required (eg: FW modifications)

 “Range” attacks

- Proximity required (eg: WiFi)

Symbols

 Remote attacks

- Target IP address MUST be reachable

• Public address or…

• Attacker located in Internal Lan

 Remote blind attacks

- Target IP MAY be also not reachable

- Leverage a 3rd party, that actually performs the attack

- Possible if vulnerability allows “reflection”

Not all vulns are created equal…

 Generic UDP daemon vulnerability

- Cannot be easily reflected
Internet

 Web server request URL length buffer
overflow

- “Reflected” attack is possible

• eg: via tag

Remote attack only

Remote Blind attack

Choosing weapon: by impact

 Authentication needed (POST-AUTH)

- Authentication required for the vulnerable
resource

- Vulnerable code path accessible only
AFTER auth

Symbols

 Authentication not needed (NO-AUTH)

- PRE-Auth

- Auth Bypass

Aiming:
Challenges

Challenges: Vulns Research

 Source code

- Not generally available

- Version mismatches

 Firmware image

- May not be available for download

- Version mismatches

 Firmware dump

- May be possible with:

• Serial/JTAG interface

• Hardware flash dump

OR...

OR...

Challenges: Exploit development

 Communications

- Serial console (if any)

 Build your own WORKING firmware image

- May be needed for uploading tools

- JTAG may be helpful for recovery from bricking

 Few resources available for exploitation

- eg: just a couple of shellcodes available

- Write your own shellcodes!

Netgear WG602v4 pinout

Challenges: Exploit development/2

 Debugging or.. “How do you look at registers?”

- Debugging tools not available

• Cross compiling needed

• Little Flash space: write your own “nano-scaled” tools

- Instruction pointer not accessible

• How do you know where your exploit failed?

- Stripped down environment

• Needed libraries may be not available

• Very minimal shell may be present on the target

 Cache incoherency

- Separate caches may bring very erratic behavior

• Affects exploit reliability

• Issue not present on x86 exploitation

Firing

Targets

Netgear WG602v4

D-Link DAP-1160

Linksys WAP54gv3

Targets

Goal:

Gain a Connect-back

TCP root shell on each!

Demo setup

Net: 192.168.1.0/24

linksysnetgear

Desktop (Win7)

evil
Internet

dlink

MIPS (very) basic notes

 Registers & Instruction set

- 32 general purpose registers

• Instruction pointer not accessible

- 32 bits instruction set

• Instruction and data alignment required

• No instructions for explicit stack manipulation

 Calling convention (o32)

- Args passed via registers ($a0-$a3)

• stack used after 4th arg

- Return address saved in register $ra at call (jal/jalr $t9)

• But.. also saved on the stack in prologue

• Return performed via jr $ra (retrieved from stack)

- Return value in $v0

Netgear WG602v4

Overview

 CPU: MIPS @ 240 Mhz (Broadcom SoC BCM5354)

 Byte “sex”: Little-endian

 Memory

- 8Mbytes RAM

- 2Mbytes Flash

 OS: Linux 2.4.20

 Web Server: Boa/0.94.11

 Firmware analysis

- Version: 1.1.0

- Source code available: Yes

- Firmware image available: No

- Dumped firmware: Yes

IP: 192.168.0.227
User: admin
Password: password

Defaults:

Auth overview

Stack

Function
stack frame

Authorization: Basic YWRtaW...

b64decode(...) buf [0x80]

http_username

http_passwd

1

2

3

4

5

Global variable

admin:password

Vuln 1.1: “Saved password Stack Overflow”

 Authentication handled by auth_authorize() in auth.c

- NOT PRESENT in Boa 0.94.11 original source code

 Password stored in flash copied in fixed size buffer on the
stack

 No lenght check Buffer overflow

Saved $ra overwrite Code execution

POST-AUTH Exploitation

NOTE: Vulnerability is PRE-AUTH “per se”... but:

- Changing stored password requires knowledge of login credentials

Changing password

 Password can be changed via POST request

- <IP_address>/cgi-bin/passwd.html

- Client side restrictions on password size (....)

 No need to restart server:

- New password wil be re-read at next authentication attempt

 Change admin password

- Send POST request:

• URL: http://<IP_address>/cgi-bin/passwd.cgi?passwd.html

• Body: setobject_pwd=<payload>

- Embed valid basic authorization in request!

 Attempt a new authentication

- Payload retrieved from NVRAM

Exploitation strategy

Overflow occurs here!

CR/LF not allowed in
payload!

 Execute payload

- $ra saved in stack overwritten with payload address

- $ra loaded from stack in function epilogue

- $sp “raised” to value in caller function

- jr $ra

Payload

 MIPSLE TCP Connect back shellcode
(215 bytes):

- no “\x00”, “\x0d”, “\x0a”

- Placed above the callee stack frame

• Too large for fitting in local buffer

Stack

Shellcode

saved $ra

caller $sp

callee $sp

cacheflush()

jr $sp

 Unreliable if payload is directly executed
(cache incoherency?)

- Mitigation trick:

• Use SYS_CACHEFLUSH Linux/MIPS
syscall

• jump to small (20 bytes) cacheflush
shellcode in buf

• cross fingers...

• jump at caller $sp (jr $sp)

 NOTE: Pad for alignment (2 bytes)

Netgear WG602v4
-

Demo

WG602v4 POST-AUTH Remote

netgear

Attacker

Internet

 Interesting side effects:

- Payload stored in Flash

- Payload executed at EVERY
authentication

- User is not able to authenticate
via web

• Payload can be removed via
serial connection

Got r00t?
Survives to reboot!

A remote root shell comes for free 

Payload cannot be easily removed

 POST-Auth Remote attack demo‟ed:

- Can be upgraded to POST-Auth Remote Blind

• Payload could be embedded into a malicious web page

• Social engineering may entice user to perform authentication on target

D-Link DAP-1160

Overview

 CPU: MIPS @ 180 Mhz (Realtek SoC RTL8186)

 Byte “sex”: Big-endian

 Memory

- 16Mbytes RAM

- 4Mbytes Flash

 OS: Linux 2.4.18

 Web Server: CAMEO-httpd

 Firmware analysis

- Version: 1.20

- Source code available: Yes (only object files for httpd…)

- Firmware image available: Yes

- Dumped firmware: No

IP: 192.168.0.50
User: admin
Password: <blank>

Defaults:

An interesting find...

 Configuration changes applied by apply.cgi

- Form handling functions specified as cgi params

• eg: http://<IP_ADDR>/apply.cgi?handling_function

 Filtering supported via formFilter() function

 Function not reachable by UI browsing... but:

- Referred by some non-linked (hidden?) webpages :

• Code meant for gateways??

• eg: http://<IP_ADDR>/adv_webfilter.htm

- Can be also directly called by:

• http://<IP_ADDR>/apply.cgi?formFilter"

Vuln 2.1: “URL filtering buffer overflow”

 URL filtering supported by formFilter function
(“Parental Control”)

 Fixed size stack buffer for storing URL

 URL copied without length check

Buffer overflow!!

 Auth still required...

POST-AUTH Exploitation

....but not for long ;-)

Exploitation strategy

 Perform authentication

- Send POST request:

• URL: http://<IP_address>/apply.cgi?formPasswordAuth

• Body: login_name=admin&login_pass=<b64encode(password)>

 Exploit

- Send POST request:

• URL: http://<IP_address>/apply.cgi?formFilter

• Body: addFilterUrl=1&url=<payload>

• addFilterUrl=1 needed for taking vulnerable code path

 Payload

- MIPS Big Endian TCP connect back shellcode

- No CR, LF, NULL

Payload

 Shellcode placed above stack frame

- Too large for fitting in local buffer

• 168 bytes available

 Stack is very stable!

- Saved $ra overwritten directly with
shellcode address

- NOP sled not even needed!

 No evident sign of cache incoherency

Stack

Shellcode

saved $ra

D-Link DAP-1160
–

Demo 1

DAP-1160 POST-AUTH Remote

dlink

Attacker

Internet

Vuln 2.2: Authentication bypass

 Accessing a specific web page allows
authentication bypass:

- http://<IP_address>/tools_firmw.htm

 Get a free ride! 

- Full unauthenticated access to the
whole Web UI

 Conditions:

- Must be first request &&

- within ~40 seconds from server start

Remote reboot?

DCCD: These reBOOTS are made for..

 DCC (D-LINK Click „n Connect) makes AP
configuration: easier

- UDP daemon on port 2003 (DCCD)

- Unathenticated access

 Rebooting is one of the “supported”
functionalities...

 Sending binary command to DCCD:

- Sends SIGTERM to init

- AP reboots

“\x05\x00” + “\x00” * 6

Attack Upgrade: NO-AUTH Remote exploitation

“\x05\x00” + “\x00” * 6

2003/UDP (DCCD)

Reboot

Sleep

Auth bypass
http://<IP_ADDR>/tools_firmw.htm

Exploit
URL filtering buffer overflow...

Enjoy your shell!

D-Link DAP-1160
–

Demo 2

DAP-1160 NO-AUTH Remote

dlink

Attacker

Internet

ONE vulnerability...

Got r00t?

 POST-Auth Remote attack

- Authentication needed but..

- Can be upgraded to Remote
Blind

 NO-Auth Remote attack

- Auth bypassed but...

- Not easily upgraded to
Remote Blind

....TWO attack flavours

Different

AUTH

level

Linksys WAP54G

Overview

 CPU: MIPS @ 200 Mhz (Broadcom SoC BCM5352)

 Byte “sex”: Little-endian

 Memory

- 8Mbytes RAM

- 2Mbytes Flash

 OS: Linux 2.4.20

 Web Server: milli_httpd

 Firmware analysis

- Version: EU 3.05 (.03?)

- Source code available: Yes (version 3.04.03)

- Firmware image available: Yes

- Dumped firmware: No

IP: 192.168.1.245
User: <blank>
Password: admin

Defaults:

Vuln 3.1: Hidden Debug

 An hidden account is present on
the device

- Used only for accessing a debug
page

- Can be used with HTTP Basic
Authentication

- Cannot be used for accessing the
normal UI

 BUT…

- Embedded in firmware

- Cannot be changed by user!

User: Gemtek
Password: gemtekswd

And....

Vuln 3.1: Hidden Debug (cont’ ed)

 Debug interface accessible with hidden
account:

- root shell over HTTP

- URL: http://<IP_ADDR>/debug.cgi

 Handled by function cgi_cmd_ui_debug:

- located outside httpd code branch (?)

• release/src/shared/broadcom.c

 A bunch of vulns:

- Credentials extraction and modification:

• eg: nvram get http_passwd

- Command injection

- XSS
a quick shell

But...we’re interested in binary
exploitation!

Vuln 3.2: debug.cgi buffer overflow(s)

 Code processes 3 POST variables

- data1 (command), data2 (tmpfile),

data3 (PID to be killed)

 Two stack buffers for allocating
data1 and data2:

- data2 buffer allocated above data1
buffer

 Buffer overflows possible for
both(!) variables

NO-AUTH Exploitation!!Debug account access

Exploitation strategy

 Exploit

- Send POST request:

• URL: http://<IP_address>/debug.cgi

• Body: data1=<payload>&data2=<align_padding><payload_address * n>

- Embed hidden debug account in HTTP Authentication header

 Payload executed

- MIPS Little Endian TCP connect back shellcode

- Sent as Percent-encoded

• Decoded by unescape() function

• Allows for inclusion of otherwise problematic chars (eg: „&+‟)

Payload

 Shellcode placed in data1 buffer

- Buffer size: 1024 bytes

 Saved $ra overwritten via data2 buffer
overflow

 Stack is very stable!

- Saved $ra overwritten directly with
shellcode address

- NOP sled not even needed!

 No evident sign of cache incoherency

Stack

Shellcode

saved $ra

data2

data1

Linksys WAP54G
–

Demo 1

WAP54g NO-AUTH Remote

linksys

Internet

Attacker

 No-Auth Remote attack

- Just demo‟ed

Got r00t?
“WORMABLE”!

Fix needed!!!

 No-Auth Remote Blind
attack

- Reflection possible

- See next demo...

Different

“distance”

 Vulnerability

- Found in debug code

- Authentication bypass
via debug account

Linksys WAP54G
–

Demo 2

WAP54g NO-AUTH Remote Blind

Internet

1

2

3

4

Attacker

 No-Auth Remote Blind attack

- Demonstrated with:

• Firefox 3.6.3

- Javascript only needed

Got r00t?

User visits malicious page... Attacker gets
reverse root shell!

URL shortening anyone??

Back to base…

Summary

 Achieved 100% of Primary Goals

- Exploitation of targets loaded with stock firmware

• TCP connect-back root shell on each

- Target proximity not required

• Remote exploitation demonstrated in all the cases

• Remote blind exploitation possible in all the cases

 Secondary Goals:

- One No-auth Remote attack demonstrated (D-Link DAP-1160)

- One No-Auth Remote Blind attack demonstrated (Linksys WAP54g)

Conclusions

 A determined attacker may easily take complete control

- Easy finding vulnerabilities

- Exploitation “per se” is smooth:

• NO countermeasures (eg: Stack Canaries, ASLR, DEP..)

• Root privileged services..

- More challenging:

• Dealing with firmware images

• Exploit development (writing tools & shellcodes, debugging)

• Exploit reliability (separate caches)

Questions

Thanks!!!

References

 Dominic Sweetman - “See MIPS Run” – Morgan Kaufmann

 MIPS Technologies - “MIPS32™ Architecture For Programmers”

 scut - “Writing MIPS/IRIX shellcode”

 Julien TINNES – “Linux MIPS ELF reverse engineering tips”

 Raphaël Rigo - mips-analyzer IDA Pro plugin (http://syscall.eu/progs/)

 Peter Werner - “Writing MIPS exploits” – Ruxcon 2003

 Laurent Butti – Julien Tinnes – Franck Veysr - “Wi-Fi Implementation Bugs: an Era of New
Vulnerabilities” – Hack.lu 2007.

 Michal Sajdak - “Remote root shell on a SOHO class router” – Confidence 2009

 Flash Based UPNP attacks (http://www.gnucitizen.org/blog/flash-upnp-attack-faq)

 Barnaby Jack – “Exploiting Embedded Systems” – BlackHat Europe 2006

 FX – “Cisco IOS Attack & Defense – State of the Art” – 25C3

 Paul Asadorian - “Things That Go Bump In The Network: Embedded Device (In)Security” – 2008
SANS/New Orleans

 Alexander Sirotkin – “Hacking embedded Linux” – LinuxConf 2007

 Naxxatoe – “Malware for SOHO Routers”

 Columbia University: Ang Cui, Yingbo Song, Pratap V. Prabhu and Salvatore J. Stolfo - “Brave New
World: Pervasive Insecurity of Embedded Network Devices” – June 2009

http://syscall.eu/progs/
http://www.gnucitizen.org/blog/flash-upnp-attack-faq
http://www.gnucitizen.org/blog/flash-upnp-attack-faq
http://www.gnucitizen.org/blog/flash-upnp-attack-faq
http://www.gnucitizen.org/blog/flash-upnp-attack-faq
http://www.gnucitizen.org/blog/flash-upnp-attack-faq
http://www.gnucitizen.org/blog/flash-upnp-attack-faq
http://www.gnucitizen.org/blog/flash-upnp-attack-faq

Contacts

Cristofaro Mune

pulsoid_at_icysilence_dot_org

http://www.icysilence.org

mailto:pulsoid@icysilence.org
mailto:pulsoid@icysilence.org
http://www.icysilence.org/

