


• All Principal Security Analyst @Riscure 

• Cristofaro Mune 

• Keywords: Software, Reversing, Exploit, Fault Injection… 

• Previous work on Mobile and Embedded Exploitation 

• Eloi Sanfelix 

• Keywords: Software security, RE, Exploiting, SCA/FI, CTF 

• Job de Haas 

• Keywords: Embedded, Side Channel Analysis, Fault Injection 

• All-round from network pentester to SoC evaluator 

 

Who are we? 



• White-Box cryptography  Protect keys in untrusted 

environment 

• Increasingly relevant in security solutions 

• The idea: Porting Hardware attacks to Software… 

…it works! Extremely effective approach 

• Relevant not only on WBC: 

• Potentially applicable to all Software-based crypto solution 

 

What and why… 
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Sign of the times… 
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• Protection against key extraction in the white-box security 

model 

• A technique that allows merging a key into a given crypto 

algorithm: 

• Described for the first time in 2002 by S. Chow et al. 

• Available for AES and DES 

• Lookup tables used for applying mathematical transforms 

to data 

• Remove the distinction between keys and crypto algorithm 

code. 

White-Box Cryptography 



Software in the White-Box context 
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Software Protection 

Obfuscation 

• Control-flow obfuscation 

• Data obfuscation 

Anti-analysis and anti-tamper 

• Detect debugger/emulator 

• Detect hooks and modifications 

Device binding 

• Bind code to current device 

WBC 

Input 

Output 

Protected binary 

Focus on this part only 

Business 

logic 
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How does WBC work? 

Image source: whiteboxcrypto.com 



WBC Construction: partial evaluation 
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WBC Construction: encoding 
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Example code 

Source: https://doar-e.github.io/ 



External encoding 
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Data manipulation – Fault Injection (FI) 

 

Modify data here 

Potential attacks on WBC (I) 

and observe changes 
 to the output 



Process manipulation – Fault injection (FI) 

 

Potential attacks on WBC (II) 

Modify code flow here 

and observe changes 
 to the output 



Side channel analysis (SCA) / intermediate data analysis 

 

Observe data here 

Potential attacks on WBC (III) 

and compare it to 
expected data here 



• Attacks for all academic WBC proposals 

• Focus on key extraction 

• Type of transformations assumed known 

• Concrete transformation and key unknown 

• In real life… 

• we do not know much about the design! 

• Not many publicly documented SCA/FI on WBC 

• Implementation-specific DFA paper in 2002 [2] 

• Recent generic DPA-like attack in [3]* 

 

WBC attack literature 

* Authors coined the term Differential Computational Analysis 
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Fault Injection Attacks 

…on WBC 



Differential Fault Analysis 
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DFA computation for DES 
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Divide and conquer 

K16 L15’
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How to port DFA to WBC? 



1. Location of fault injection point 

2. Fault injection and ciphertext collection 

o Multiple options available 

 

 

 

 

3. Fault analysis 

o We use our own tools 

o Some AES DFA examples on GitHub 

DFA attack process 



• Binary DES encryption WBC 

• Challenge posted at whiteboxcrypto.com 

• DES key hidden within lookups 

• Key value is 0x30 0x32 0x34 0x32 0x34 0x36 0x32 0x36 

 

• We’ll demo all our attacks on this target 

 

 

Example target: wbDES 
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STEP 2: Fault injection 

1. Select target event within target region 

2. Modify data read by that event 

If event id within target region 

Invert a random bit 



STEP 3: Analysis 

DEMO 



Summary DFA results 

Implementation Fault injection Results 

Wyseur (DES) Unicorn script Broken in 40 faults 

Hack.lu 2009 

(AES) 
Debugger script Broken in 90 faults 

SSTIC 2012 (DES) 
Modified lifted 

code 
Broken in 60 faults 

Karroumi (AES) 
Modified source 

code 
Broken in 80 faults 

NSC 2013 

(encoded AES) 
N/A 

Not broken – 

encoding makes 

DFA not feasible 



Side Channel Attacks 

…on WBC 



Differential Power Analysis attack 

First proposed ~1998 by Paul Kocher to attack on smart cards: 

 Measuring power consumption of a crypto execution  

 Take multiple measurements for different inputs 

 Infer information about the key from the difference of these 

What is a DPA attack? 
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Hypothesis testing 

 

 



Divide and conquer 
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Generalization of differential SCA attacks 

 

 

 

 

 

 

 

 

Take multiple “measurements” of 
behavior of crypto operations for 

different data 

Predict behavior for sub keys based 
on the same data and “leakage” 

model 

Apply statistical methods to distinguish the “best” sub key 
• Difference of means 
• Correlation 
• Mutual Information analysis, Linear regression 

analysis, … 

Find correct guesses for all sub keys to determine key 



To our surprise…. 

 

 

 

 

 

It works on White Box Crypto out-of-the-box!!! 

 

  



SCA attack process 

1. Instrument WBC to collect “measurements” 

• Again: 

 

 

2. Execute WBC with random inputs multiple times 

3. Collect “measurement – input/output pairs” in useable 

form 

4. SCA Analysis 

 

 



STEP1: Capture measurement 

• Grab the data using any method that fits your target 

• Instrument execution (eg. PIN, Valgrind) 

• Capture stack snapshots per crypto round (Hooking, 

debugger) 

• Use emulators and record (QEMU, Unicorn, PANDA) 

• Capture any information during execution that might leak 

• All reads/writes to memory 

• Lower bits of addresses of memory accesses 

• All register contents 

 



STEP2+3: Execute + Collect  

• Provide/inject random input data, capture output data 

• Program arguments 

• Use instrumentation from STEP 1 

• Store it in a way that allows testing key guesses 

• Store as single bit samples 

• Assure alignment between multiple captures 

 



STEP 4: SCA Analysis 

Same target as for DFA: wbDES 

Same hidden key: 0x30 0x32 0x34 0x32 0x34 0x36 0x32 0x36 

DEMO 



Summary SCA results 

Implementati
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Results 

NXP [3] 

Wyseur 

(DES) 
Round output 

Broken in 75 

traces 

Broken in 65 

traces 

Hack.lu 2009 

(AES) 
S-Box output 

Broken in 16 

traces 

Broken in 16 

traces 

SSTIC 2012 

(DES) 
Round output 

Broken in 16 

traces 

Broken in 16 

traces 

Karroumi 

(AES) 

S-Box and 

GF(256) 

inverse 

Broken in 

~2000 traces 

Broken in 

~500 traces 

NSC 2013 

(encoded 

AES) 

N/A Not broken 

Not broken – 

encoding 

makes DPA 

not feasible 



What does it mean? 

No detailed knowledge required 

• Of WBC implementation 

• Where the WBC is processed exactly 

No manipulation required 

 A secret random input/output encoding is the only barrier 

But:  

These random encodings do not work for many real world 

applications 

 



Introduction 

Key recovery attacks 

Conclusion 





Is WBC broken and useless? 

• SCA/FI on standard WBC very effective: 

• Very limited knowledge required 

• RE skills might be needed 

• Countermeasures and risk mitigation required 

• Broken several open-source and commercial WBC 

• Commercial implementations typically require more RE skills 

• But… 

• Not regular software crypto  more complex attacks 

• Software protection layers can be a deterrent 

• With renewability it can be good enough 

 



How to make it stronger? 

WBC 

Input 

Output 

Protected binary 
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key extraction attacks 

 (SCA, FI, algebraic, …) 

Business 

logic 
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advanced SW RE 



Side Channel Analysis attacks 

• Must prevent statistical dependence between intermediates 

and key 

• Typical countermeasures based on randomness difficult in 

white-box scenario 

 

Differential Fault Analysis attacks 

• Double-checks on encoded data  might be bypassed if 

detected! 

• Carry redundant data along computation? 

• Break fault models by propagating faults? 

 

Do you have any other ideas? 

But how? 



Thank you!! 

eloi@riscure.com 

@esanfelix 

mune@riscure.com 

@pulsoid 

dehaas@riscure.com 

 



References 

[1] http://crypto.stanford.edu/DRM2002/whitebox.pdf 

[2] http://crypto.stanford.edu/DRM2002/drm1.pdf 

[3] https://eprint.iacr.org/2015/753  

[4] https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf  

[5] https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf  

 

 

 

 

http://crypto.stanford.edu/DRM2002/whitebox.pdf
http://crypto.stanford.edu/DRM2002/drm1.pdf
https://eprint.iacr.org/2015/753
https://eprint.iacr.org/2015/753
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf

