

• All Principal Security Analyst @Riscure

• Cristofaro Mune

• Keywords: Software, Reversing, Exploit, Fault Injection…

• Previous work on Mobile and Embedded Exploitation

• Eloi Sanfelix

• Keywords: Software security, RE, Exploiting, SCA/FI, CTF

• Job de Haas

• Keywords: Embedded, Side Channel Analysis, Fault Injection

• All-round from network pentester to SoC evaluator

Who are we?

• White-Box cryptography  Protect keys in untrusted

environment

• Increasingly relevant in security solutions

• The idea: Porting Hardware attacks to Software…

…it works! Extremely effective approach

• Relevant not only on WBC:

• Potentially applicable to all Software-based crypto solution

What and why…

Introduction

Key recovery attacks

Conclusion

Introduction

Key recovery attacks

Conclusion

Black-Box Security

Encrypt Decrypt

Observe

Alter

Gray-Box Security

Encrypt Decrypt

Observe

Alter

Sign of the times…

Sign of the times…

White-Box Security

Encrypt Decrypt

Observe

Alter

White-Box Security

Encrypt Decrypt

Observe

Alter

• Protection against key extraction in the white-box security

model

• A technique that allows merging a key into a given crypto

algorithm:

• Described for the first time in 2002 by S. Chow et al.

• Available for AES and DES

• Lookup tables used for applying mathematical transforms

to data

• Remove the distinction between keys and crypto algorithm

code.

White-Box Cryptography

Software in the White-Box context

Crypto

Input

Output

Business

logic

key I/O Direct access

Can be modified

at will

Software Protection

Obfuscation

• Control-flow obfuscation

• Data obfuscation

Anti-analysis and anti-tamper

• Detect debugger/emulator

• Detect hooks and modifications

Device binding

• Bind code to current device

WBC

Input

Output

Protected binary

Focus on this part only

Business

logic

I/O

How does WBC work?

Image source: whiteboxcrypto.com

WBC Construction: partial evaluation

in

key

out

T

in

out

S

WBC Construction: encoding

T’

in

out

T

in

out

DECODE

ENCODE

Internal encoding

Example code

Source: https://doar-e.github.io/

External encoding

WB AES E(INPUT) E’(OUTPUT)

D
E

C
O

D
E

E
N

C
O

D
E

Sn D
EC

O
D

E

EN
C

O
D

E

S2 D
EC

O
D

E

EN
C

O
D

E

S1 D
EC

O
D

E

EN
C

O
D

E

…

Sending

Process

Receiving

Process

ENCODE DECODE

Data manipulation – Fault Injection (FI)

Modify data here

Potential attacks on WBC (I)

and observe changes
 to the output

Process manipulation – Fault injection (FI)

Potential attacks on WBC (II)

Modify code flow here

and observe changes
 to the output

Side channel analysis (SCA) / intermediate data analysis

Observe data here

Potential attacks on WBC (III)

and compare it to
expected data here

• Attacks for all academic WBC proposals

• Focus on key extraction

• Type of transformations assumed known

• Concrete transformation and key unknown

• In real life…

• we do not know much about the design!

• Not many publicly documented SCA/FI on WBC

• Implementation-specific DFA paper in 2002 [2]

• Recent generic DPA-like attack in [3]*

WBC attack literature

* Authors coined the term Differential Computational Analysis

Key recovery attacks

Introduction

Conclusion

Fault Injection Attacks

…on WBC

Differential Fault Analysis

Correct result

Faulty result

Correct result

Faulty result

Correct result

Faulty result

Correct result

Faulty result

DFA computation for DES

L16 R16

R15 L15

 R16 = F(R15 , K16)  L15

K16

K15

R’15

L’16 R’16

DFA computation for DES

L15

 R16 = F(R15 , K16)  L15

R’16 = F(R’15 , K16)  L15

R16  R’16 = F(R15 , K16)  F(R’15 , K16)

XOR

K16

K15

Divide and conquer

K16 L15’

Independent

6-bit sub-keys

 Independent

6-bit search

How to port DFA to WBC?

1. Location of fault injection point

2. Fault injection and ciphertext collection

o Multiple options available

3. Fault analysis

o We use our own tools

o Some AES DFA examples on GitHub

DFA attack process

• Binary DES encryption WBC

• Challenge posted at whiteboxcrypto.com

• DES key hidden within lookups

• Key value is 0x30 0x32 0x34 0x32 0x34 0x36 0x32 0x36

• We’ll demo all our attacks on this target

Example target: wbDES

Red: writes

Green: reads

STEP 1: Locating the injection point

Event counter

S
ta

c
k
 s

p
a

c
e
 Target area

STEP 2: Fault injection

1. Select target event within target region

2. Modify data read by that event

If event id within target region

Invert a random bit

STEP 3: Analysis

DEMO

Summary DFA results

Implementation Fault injection Results

Wyseur (DES) Unicorn script Broken in 40 faults

Hack.lu 2009

(AES)
Debugger script Broken in 90 faults

SSTIC 2012 (DES)
Modified lifted

code
Broken in 60 faults

Karroumi (AES)
Modified source

code
Broken in 80 faults

NSC 2013

(encoded AES)
N/A

Not broken –

encoding makes

DFA not feasible

Side Channel Attacks

…on WBC

Differential Power Analysis attack

First proposed ~1998 by Paul Kocher to attack on smart cards:

 Measuring power consumption of a crypto execution

 Take multiple measurements for different inputs

 Infer information about the key from the difference of these

What is a DPA attack?

Differential trace

0
0

0
0

1
1

1
1

Group by known data Average trace

Subtract

Differential trace

Hypothesis testing

Divide and conquer

K1 L1

Independent

6-bit sub-keys

 Independent

6-bit search

Generalization of differential SCA attacks

Take multiple “measurements” of
behavior of crypto operations for

different data

Predict behavior for sub keys based
on the same data and “leakage”

model

Apply statistical methods to distinguish the “best” sub key
• Difference of means
• Correlation
• Mutual Information analysis, Linear regression

analysis, …

Find correct guesses for all sub keys to determine key

To our surprise….

It works on White Box Crypto out-of-the-box!!!

SCA attack process

1. Instrument WBC to collect “measurements”

• Again:

2. Execute WBC with random inputs multiple times

3. Collect “measurement – input/output pairs” in useable

form

4. SCA Analysis

STEP1: Capture measurement

• Grab the data using any method that fits your target

• Instrument execution (eg. PIN, Valgrind)

• Capture stack snapshots per crypto round (Hooking,

debugger)

• Use emulators and record (QEMU, Unicorn, PANDA)

• Capture any information during execution that might leak

• All reads/writes to memory

• Lower bits of addresses of memory accesses

• All register contents

STEP2+3: Execute + Collect

• Provide/inject random input data, capture output data

• Program arguments

• Use instrumentation from STEP 1

• Store it in a way that allows testing key guesses

• Store as single bit samples

• Assure alignment between multiple captures

STEP 4: SCA Analysis

Same target as for DFA: wbDES

Same hidden key: 0x30 0x32 0x34 0x32 0x34 0x36 0x32 0x36

DEMO

Summary SCA results

Implementati

on

Attacked

intermediate
Results

Results

NXP [3]

Wyseur

(DES)
Round output

Broken in 75

traces

Broken in 65

traces

Hack.lu 2009

(AES)
S-Box output

Broken in 16

traces

Broken in 16

traces

SSTIC 2012

(DES)
Round output

Broken in 16

traces

Broken in 16

traces

Karroumi

(AES)

S-Box and

GF(256)

inverse

Broken in

~2000 traces

Broken in

~500 traces

NSC 2013

(encoded

AES)

N/A Not broken

Not broken –

encoding

makes DPA

not feasible

What does it mean?

No detailed knowledge required

• Of WBC implementation

• Where the WBC is processed exactly

No manipulation required

 A secret random input/output encoding is the only barrier

But:

These random encodings do not work for many real world

applications

Introduction

Key recovery attacks

Conclusion

Is WBC broken and useless?

• SCA/FI on standard WBC very effective:

• Very limited knowledge required

• RE skills might be needed

• Countermeasures and risk mitigation required

• Broken several open-source and commercial WBC

• Commercial implementations typically require more RE skills

• But…

• Not regular software crypto  more complex attacks

• Software protection layers can be a deterrent

• With renewability it can be good enough

How to make it stronger?

WBC

Input

Output

Protected binary

Robustness against

key extraction attacks

 (SCA, FI, algebraic, …)

Business

logic

Robustness against

advanced SW RE

Side Channel Analysis attacks

• Must prevent statistical dependence between intermediates

and key

• Typical countermeasures based on randomness difficult in

white-box scenario

Differential Fault Analysis attacks

• Double-checks on encoded data  might be bypassed if

detected!

• Carry redundant data along computation?

• Break fault models by propagating faults?

Do you have any other ideas?

But how?

Thank you!!

eloi@riscure.com

@esanfelix

mune@riscure.com

@pulsoid

dehaas@riscure.com

References

[1] http://crypto.stanford.edu/DRM2002/whitebox.pdf

[2] http://crypto.stanford.edu/DRM2002/drm1.pdf

[3] https://eprint.iacr.org/2015/753

[4] https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf

[5] https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf

http://crypto.stanford.edu/DRM2002/whitebox.pdf
http://crypto.stanford.edu/DRM2002/drm1.pdf
https://eprint.iacr.org/2015/753
https://eprint.iacr.org/2015/753
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-152.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf
https://www.cosic.esat.kuleuven.be/publications/thesis-235.pdf

