
Cristofaro Mune (@pulsoid)

Eloi Sanfelix (@esanfelix)

when secure boot falls short…

Secure Initialization of TEEs

EuskalHack 2017

• Cristofaro Mune

− Embedded Security Consultant (Independent)

− Keywords: TEEs, IoT, Embedded SW & HW, Fault Injection

− Previous work: WBC, IoT, Embedded Exploitation, Mobile

• Eloi Sanfelix

− Principal Security Analyst @Riscure

− Keywords: Software security, TEE, RE, Exploiting, SCA/FI, CTF

− Previous work: WBC, DRM, PayTV, Smart Cards

Who?

• TEEs Increasingly relevant in security solutions

…Basically everywhere

• Research:

• Interesting but limited in amount and scope

• Lack of a generic TEE security modeling

• Components and Mechanisms

• Attack surfaces

• Attack vectors

What and why…

TEEs: Fundamentals

• Aimed at providing a secure environment for execution of

security critical tasks:

− Payment applications

− DRM applications

− …

• Separated from Rich execution environment (REE)

− Non-secure, untrusted environment

• Support for Trusted Application (TAs):

− Separated from each other

− Typically implementing one single use case

Trusted Execution Environment (TEE)

System overview
1

2

3

source: globalplatform.org

1. TEE separations:

1. Separation from the Rich Execution Environment (REE)

2. Separation between TAs and the TEE OS

3. Separation between TAs

TEE Critical items

Strong cooperation between HW & SW

We focus on this…

…but concepts also apply to these.

HW & SW roles

Hardware protecting

Software

Software protecting

secrets

A TEE reference frame (runtime)

H/W Platform

TEE OS
Drivers

SDK

TA

System TAs

1

2

3

4
6

5

REE TEE

Execution Memory I/O Inter-process

(MMU)

HW
primitives

for
separations

TEE Trusted Code Base

(TCB):

Can remove any protection

ARM TrustZone

Example SoC: CPU

CPU Security State

NS=1 NS=0

Security State propagation

ARM TZ

core

AMBA AXI3 bus

DDR Flash GPU...

AxPROT[1] indicates if transaction

Secure or Non-Secure

• All AXI slaves are memory mapped

− Including DDR, HW registers, etc.

− Page Table Entries include an NS-bit

• AxPROT[1] depends on CPU and PTE NS bits

How is AxPROT[1] determined?

CPU NS PTE NS AxPROT[1]

0 0 0

0 1 1

1 x 1

Example SoC: protection enforcement

Example: Protecting DDR memory

Example: Protecting peripherals

• AXI slaves in charge of enforcing transaction security

• Can be done with:

− Controllers (TZASC, TZPC, etc)

− Hardcoded logic in bus matrix

• Controllers MUST be configured by SW

What about other slaves?

Secure Boot

Why Secure Boot?

− Integrity and confidentiality of flash contents not assured

• TEE security is not established!

− Secure Boot provides this assurance

CPU
FLASH DDR

ROM OTP

Debug

BL1.2

…

BL1.1

SRAM
BL1.1

STACK

BL1.2

…

Generic Embedded System

Typical Secure Boot implementation

Internal ROM

Bootloader 1 (BL1)

RSA key

signature

…

− Assures integrity (and confidentiality) of flash contents

− Root of trust composed of immutable code and data

SB vulnerability: Samsung Galaxy S4

1. aboot copies header, then kernel

2. Signature is verified and kernel booted if OK.

CPU
FLASH DDR

ROM OTP

Debug

Generic Embedded System

Header

…

aboot

SRAM
aboot

STACK

Header

…

Source: Azimuth Security, Exploiting Samsung Galaxy S4 Secure Boot

Kernel

Kernel

http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html

Any problems?

Untrusted  Arbitrary memory corruption

Source: Azimuth Security, Exploiting Samsung Galaxy S4 Secure Boot

http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html

So what?

− aboot smashes its own code with attacker-supplied code!

− Alternatively, attacker could target return address on stack

Source: Azimuth Security, Exploiting Samsung Galaxy S4 Secure Boot

CPU
FLASH DDR

ROM OTP

Debug

Header

…

aboot

SRAM
aboot

STACK

Header

Kernel

Kernel

Generic Embedded System

http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-secure-boot.html

SB vulnerability: AMLogic S905 SoC

Source: http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

Untrusted data used to determine

whether signature check is enabled!

http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

• Secure Boot makes sure code is authentic

− You still need to set up the REE and TEE!

• In particular:

− Initialize separations (TZASC, TZPC, …)

− Load TEE OS into Secure World

− Initialize other SoC components

Beyond Secure Boot

The TEE needs to be
securely initialized before

running any REE code!

“Time”:

TEE initialization

• TEE initialization is based on Secure Boot.

• TEE initialization must also protect, load, verify, initialize

and configure the TEE.

• Then demote to REE.

TEE initialization

A TEE reference frame (full)

H/W Platform
Root of

Trust

Boot stages

TEE OS
Drivers

SDK

TA

System TAs

1

2

3

4
6

5

7

8
REE TEE

Execution Memory I/O Inter-process

(MMU)

HW
primitives

for
separations

TEE Trusted Code Base

(TCB):

Can remove any protection

• Demotion point:

− The point (in time & code) in a boot process, where ALL the

privileges for configuring a TEE are given up

− …and REE is started.

• Critical path(s):

− The set of all the code paths that can be executed before the

Demotion point

− Parts of the TEE attack surface

Some definitions

How it works: Old Samsung phone

iROM

BL1

BL2

PBL

TZSW

Signed/encrypted

Signed

Signed

Android

SECKEYRestricted

External

Load + Exec

Exec

Load

Signed

REE execution

Critical paths

Demotion to REE

• The following must be executed before Demotion point

• For each TEE-related boot stage:

− Identify WHERE to load the stage in memory

− Protect memory from REE

- E.G. configure TZASC

− Load and Verify.

− Run any stage initialization code

• Configure (…more to come…)

− Other IPs

− Other Protection Controllers

Just “Secure Boot”?

• Reference implementation for trusted TEE initialization

− ARMv8-A architecture

− ATF v1.3 now released

- Security improvements over v1.2

• Customizations needed:

− Highly dependent on memory layout (and design)

− Examples:

- Configuration of TZASC and TZPC

 …or equivalent controllers

- Initialization routines for BL31 and BL32

ARM Trusted Firmware

Example: ARM Trusted Firmware

• One of TEE security foundations

− Is it Secure or Non-Secure Memory?

Range checks

How difficult can it be?

• TEE ranges can be dynamic (and scattered)

− Hardcoded values may be difficult to handle

• Logical mistakes may happen….

Real world example

https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html

https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html
https://atredispartners.blogspot.com.mt/2014/08/here-be-dragons-vulnerabilities-in.html

• Multiple memories:

− Not everything is DDR

• Layout can be dynamic:

− Example: Video Memory

• Proper check location and API design are fundamental

• System-level consistency of view is needed for proper

enforcement:

− Across every SW runtime component

− Across the whole SoC HW.

Range checks not so easy…

“Space” dimension:

Not just the ARM CPU

Remember?

• SoC much more than the ARM CPU

• DMA engines

− Crypto accelerators

− PCI/PCIe devices

• Other processing engines

− Audio/Video CPUs

− Modem and WiFi controllers

− Power management MCUs

Potential attack surface

Any IP with access to the bus MUST
be considered!

• Most masters are also slaves

− DMA transactions configured through the bus

− Auxiliary CPUs expose APIs through the bus

− …

• Need to take care of configuration

− Secure bus masters should not be driven by non-secure

processing engines

− Firmware running on secure bus masters should be

authenticated and secured!

Buses, masters and slaves

Example: HW crypto engine

DDR

REE Apps

Secure
DDR

REE
Code/Data

HW AES
Engine

Encrypted
content

TEE
Code/Data

Decrypted
content

REE OS

TAs

TEE OS

“Decrypt

from A to B”

SecureNon-secure

What if… ?

DDR

REE Apps

Secure
DDR

REE
Code/Data

HW AES
Engine

Encrypted
content

TEE
Code/Data

REE OS

TAs

TEE OS

“Decrypt

from A to B”

SecureNon-secure

• Some use cases might require isolating peripherals

− Secure display to show mobile payment data

− Secure touch sensor for PIN entry

− Secure fingerprint sensor

• But some peripherals need to be available to both worlds

 Runtime configuration required

Securing peripherals

State transitions must be carefully
considered

“Time and Space”:

TEE Warm Boot

• Simply put: Boot after “Suspend-To-RAM”

− Typically requested from REE

• Only some parts of the SoC are powered down:

− DDR in self-refresh mode

− Some limited parts always-on for restore

• Restore/reuse saved execution contexts

− E.g: Entry points

Warm Boot

• Contexts are not fully stored in TEE memory?

• Protection controllers are shutdown as well?

• Contexts are stored in non-DDR memory?

− E.G. some on-chip SRAM

• Remaining execution cores are non-secure?

− Do they have access to memory storing contexts?

What if…

Conclusion

• TEE security can be complex:

− Full HW & SW cooperation continuously required

• TEE initialization is critical

• HW can also be an attacker…

• More accurate TEE security model needed:

− Properly frame attacks, discussions and design choices

• Holistic view required

Conclusion

TEE is an environment…
…not “just” a feature.

Thank you!!

Cristofaro Mune (@pulsoid)

pulsoid@icysilence.org

Eloi Sanfelix (@esanfelix)

eloi@riscure.com

