
KERNELFAULT:
Pwning Linux using Hardware Fault Injection

Niek Timmers
timmers@riscure.com

(@tieknimmers)

Cristofaro Mune
c.mune@pulse-sec.com

(@pulsoid)

September 22, 2017

mailto:timmers@riscure.com
mailto:timmers@riscure.com
mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com

Who are we?
Niek Timmers (@tieknimmers)

• Security Analyst @ Riscure
• Security testing of different products and technologies

Cristofaro Mune (@pulsoid)
• Product Security Consultant and Researcher
• Loves the intermixing of HW and SW, IoT, TEEs, FI and

anything else challenging my curiosity.

We have shared interests
• Embedded device security
• Fault injection

Not so much on the question if beer or wine is better...

Who are we?
Niek Timmers (@tieknimmers)

• Security Analyst @ Riscure
• Security testing of different products and technologies

Cristofaro Mune (@pulsoid)
• Product Security Consultant and Researcher
• Loves the intermixing of HW and SW, IoT, TEEs, FI and

anything else challenging my curiosity.

We have shared interests
• Embedded device security
• Fault injection

Not so much on the question if beer or wine is better...

Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if(key_is_correct) <-- Glitch here!
{
open_door();

}
else
{
keep_door_closed();

}
...

How can we introduce these faults?

Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if(key_is_correct) <-- Glitch here!
{
open_door();

}
else
{
keep_door_closed();

}
...

How can we introduce these faults?

Fault injection techniques

Clock Voltage EM Laser

Remarks
• These affect the target’s environmental conditions
• All have their own characteristics
• We used Voltage Fault Injection for all attacks

Fault injection techniques

Clock Voltage EM Laser

Remarks
• These affect the target’s environmental conditions
• All have their own characteristics
• We used Voltage Fault Injection for all attacks

Fault injection fault model

We like to keep it simple: instruction corruption

Single-bit (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Multi-bit (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Includes other fault models (e.g. instruction skipping)

Some real world examples!

Unlooper1 – Hacking smart cards

Remarks
• Hacked smart cards were being disabled using infinite loop
• Use a glitch to enable them again

1
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper

DFA – Recovering keys

Similar attacks for most crypto algorithms!

DFA – Recovering keys

Similar attacks for most crypto algorithms!

XBOX2 – Bypassing secure boot

Remarks
• Use a glitch in the reset line to reset registers
• Bypass hash comparison used by integrity check

2
Video-game consoles architecture under microscope - R. Benadjila and M. Renard

Nintendo3 – Bypassing secure boot

Remarks
• Use a glitch to bypass length check: code execution
• Dump decryption key from memory

3
https://media.ccc.de/v/33c3-8344-nintendo_hacking_2016

https://media.ccc.de/v/33c3-8344-nintendo_hacking_2016

BADFET4

Remarks
• Use an EM glitch to bypass secure boot of a Cisco phone
• Not that invasive... (i.e. phone’s housing can be closed)

4
https://github.com/RedBalloonShenanigans/BADFET

https://github.com/RedBalloonShenanigans/BADFET

More fault injection during boot...5

Why not use Fault Injection during runtime?
5
https://www.blackhat.com/docs/eu-16/materials/

eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

More fault injection during boot...5

Why not use Fault Injection during runtime?
5
https://www.blackhat.com/docs/eu-16/materials/

eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

Fault injection meets Linux!

How is Linux’ security usually compromised?

A summary of Linux CVEs6

Year DoS Exec Overflow Corruption Leak PrivEsc
2015 55 6 15 4 10 17
2016 153 5 38 18 35 52
2017 92 166 35 16 78 29

What if they are not present or not known?

6
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

How is Linux’ security usually compromised?

A summary of Linux CVEs6

Year DoS Exec Overflow Corruption Leak PrivEsc
2015 55 6 15 4 10 17
2016 153 5 38 18 35 52
2017 92 166 35 16 78 29

What if they are not present or not known?

6
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

Others7 came to the same conclusion:

Fault injection!!!!
7
https://derrekr.github.io/3ds/33c3/#/18

https://derrekr.github.io/3ds/33c3/#/18

Others7 came to the same conclusion:

Fault injection!!!!
7
https://derrekr.github.io/3ds/33c3/#/18

https://derrekr.github.io/3ds/33c3/#/18

Voltage fault injection setup

Target
• Fast and feature rich System-on-Chip (SoC)
• ARM Cortex-A9 (32-bit)
• Ubuntu 14.04 LTS (fully patched)

Voltage fault injection parameters

In the lab...

On stage...

Characterization

• Determine if the target is vulnerable to fault injection

• Determine if the fault injection setup is effective

• Estimate required fault injection parameters for an attack

• An open target is required, but not a requirement

Characterization Test Application

Characterization – Altering a loop

. . .
set_trigger(1);

for(i = 0; i < 10000; i++) { // glitch here
j++; // glitch here

} // glitch here

set_trigger(0);
. . .

Remarks
• Implemented in a Linux Kernel Module (LKM)
• Successful glitches are not time dependent

Characterization – Possible responses

Expected: ’glitch is too soft’
counter = 00010000

Mute/Reset: ’glitch is too hard’
counter =

Success: ’glitch is exactly right’
counter = 00009999
counter = 00010015
counter = 00008687

Characterization – Altering a loop

Remarks
• We took 16428 experiments in 65 hours
• We randomize: Glitch VCC / Glitch Length / Glitch Delay
• We can fix either the Glitch VCC or the Glitch Length

Characterization – Altering a loop

Remarks
• We took 16428 experiments in 65 hours
• We randomize: Glitch VCC / Glitch Length / Glitch Delay
• We can fix either the Glitch VCC or the Glitch Length

Characterization – Bypassing a check

. . .
set_trigger(1);

if(cmd.cmdid < 0 || cmd.cmdid > 10) {
return -1;

}

if(cmd.length > 0x100) { // glitch here
return -1; // glitch here

} // glitch here

set_trigger(0);
. . .

Remarks
• Implemented in a Linux Kernel Module (LKM)
• Successful glitches are time dependent

Characterization – Bypassing a check

Remarks
• We took 16315 experiments in 19 hours
• The success rate between 6.2 µs and 6.8 µs is: 0.41%
• The check is bypassed every 15 minutes

We are ready for attack!

Let’s attack Linux!

We are ready for attack!

Let’s attack Linux!

Attacking Linux

Opening /dev/mem – Description

(1) Open /dev/mem using open syscall

(2) Bypass check performed by Linux kernel using a glitch

(3) Map arbitrary address in physical memory

Opening /dev/mem – Code

*(volatile unsigned int *)(trigger) = HIGH;

int mem = open("/dev/mem", O_RDWR | O_SYNC);

*(volatile unsigned int *)(trigger) = LOW;

if(mem == 4) {
void * addr = mmap (0, ..., ..., mem, 0);
printf("%08x\n", *(unsigned int *)(addr));

}
. . .

Remarks
• This code is running in user space
• Linux syscall: sys open (0x5)

Opening /dev/mem – Results

Remarks
• We took 22118 experiments in 17 hours
• The success rate between 25.5 µs and 26.8 µs is: 0.53%
• The Kernel is pwned every 10 minutes

Linux kernel pwn #1

SHellzapoppin’ – Description

(1) Set all registers to 0 to increase the probability8

(2) Perform setresuid syscall to set process IDs to root

(3) Bypass check performed by Linux kernel using a glitch

(4) Execute root shell using system function

8
Linux kernel uses (mostly) return value 0 when a function executes successfully

SHellzapoppin’ – Code

*(volatile unsigned int *)(trigger) = HIGH;

asm volatile (
"movw r12, #0x0;" // Repeat for other
"movt r12, #0x0;" // unused registers
. . .
"mov r7, #0xd0;" // setresuid syscall
"swi #0;" // Linux kernel takes over

"mov %[ret], r0;" // Store return value in r0
: [ret] "=r" (ret) : : "r0", . . ., "r12")

*(volatile unsigned int *)(trigger) = LOW;

if(ret == 0) { system("/bin/sh"); }

Remarks
• This code is running in user space
• Linux syscall: sys setresuid (0xd0)

SHellzapoppin’ – Results

Remarks
• We took 18968 experiments in 21 hours
• The success rate between 3.14 µs and 3.44 µs is: 1.3%
• We pop a root shell every 5 minutes !

Linux kernel pwn #2

Reflection on these attacks...

• Linux checks can be (easily) bypassed using fault injection

• Attacks are identified and reproduced within a day

• Full fault injection attack surface not explored

Can we mitigate these type of attacks?

Reflection on these attacks...

• Linux checks can be (easily) bypassed using fault injection

• Attacks are identified and reproduced within a day

• Full fault injection attack surface not explored

Can we mitigate these type of attacks?

Software mitigations
Some examples

• Double checks
• Random delays
• Flow counters

An example

random_delay(); // random delay 1
if(a == b) { // check 1

random_delay(); // random delay 2
if(a == b) { // check 2

check_passed(); // check passed
} else { error(); } // error

} else { error(); } // error

Will this work for larger code bases?

Software mitigations
Some examples

• Double checks
• Random delays
• Flow counters

An example

random_delay(); // random delay 1
if(a == b) { // check 1

random_delay(); // random delay 2
if(a == b) { // check 2

check_passed(); // check passed
} else { error(); } // error

} else { error(); } // error

Will this work for larger code bases?

Hardware mitigations

Some examples
• Redundancy
• Parity
• Detectors

An example9

Standard embedded technology does not include these!
9
https://eprint.iacr.org/2004/100.pdf

https://eprint.iacr.org/2004/100.pdf

Hardware mitigations

Some examples
• Redundancy
• Parity
• Detectors

An example9

Standard embedded technology does not include these!
9
https://eprint.iacr.org/2004/100.pdf

https://eprint.iacr.org/2004/100.pdf

Is this all?

More attack vectors...

Controlling PC directly10

• ARM (AArch32) has an interesting ISA characteristic
• The program counter (PC) register is directly accessible

Several valid ARM instructions

MOV r7,r1 00000001 01110000 10100000 11100001
EOR r0,r1 00000001 00000000 00100000 11100000
LDR r0,[r1] 00000000 00000000 10010001 11100101
LDMIA r0,{r1} 00000010 00000000 10010000 11101000

Several corrupted ARM instructions setting PC directly

MOV pc,r1 00000001 11110000 10100000 11100001
EOR pc,r1 00000001 11110000 00101111 11100000
LDR pc,[r1] 00000000 11110000 10010001 11100101
LDMIA r0,{r1, pc} 00000010 10000000 10010000 11101000

Variations of this attack affect other architectures!

10
Controlling PC on ARM using Fault Injection – Timmers et al., 2016

Controlling PC directly10

• ARM (AArch32) has an interesting ISA characteristic
• The program counter (PC) register is directly accessible

Several valid ARM instructions

MOV r7,r1 00000001 01110000 10100000 11100001
EOR r0,r1 00000001 00000000 00100000 11100000
LDR r0,[r1] 00000000 00000000 10010001 11100101
LDMIA r0,{r1} 00000010 00000000 10010000 11101000

Several corrupted ARM instructions setting PC directly

MOV pc,r1 00000001 11110000 10100000 11100001
EOR pc,r1 00000001 11110000 00101111 11100000
LDR pc,[r1] 00000000 11110000 10010001 11100101
LDMIA r0,{r1, pc} 00000010 10000000 10010000 11101000

Variations of this attack affect other architectures!

10
Controlling PC on ARM using Fault Injection – Timmers et al., 2016

Controlling PC directly10

• ARM (AArch32) has an interesting ISA characteristic
• The program counter (PC) register is directly accessible

Several valid ARM instructions

MOV r7,r1 00000001 01110000 10100000 11100001
EOR r0,r1 00000001 00000000 00100000 11100000
LDR r0,[r1] 00000000 00000000 10010001 11100101
LDMIA r0,{r1} 00000010 00000000 10010000 11101000

Several corrupted ARM instructions setting PC directly

MOV pc,r1 00000001 11110000 10100000 11100001
EOR pc,r1 00000001 11110000 00101111 11100000
LDR pc,[r1] 00000000 11110000 10010001 11100101
LDMIA r0,{r1, pc} 00000010 10000000 10010000 11101000

Variations of this attack affect other architectures!

10
Controlling PC on ARM using Fault Injection – Timmers et al., 2016

Controlling PC directly10

• ARM (AArch32) has an interesting ISA characteristic
• The program counter (PC) register is directly accessible

Several valid ARM instructions

MOV r7,r1 00000001 01110000 10100000 11100001
EOR r0,r1 00000001 00000000 00100000 11100000
LDR r0,[r1] 00000000 00000000 10010001 11100101
LDMIA r0,{r1} 00000010 00000000 10010000 11101000

Several corrupted ARM instructions setting PC directly

MOV pc,r1 00000001 11110000 10100000 11100001
EOR pc,r1 00000001 11110000 00101111 11100000
LDR pc,[r1] 00000000 11110000 10010001 11100101
LDMIA r0,{r1, pc} 00000010 10000000 10010000 11101000

Variations of this attack affect other architectures!

10
Controlling PC on ARM using Fault Injection – Timmers et al., 2016

Controlling PC directly – Description

(1) Set all registers to a specific value (e.g. 0x41414141)

(2) Execute random Linux system calls

(3) Load the arbitrary value into the PC register using a glitch

Controlling PC – Code
. . .
int rand = random();

*(volatile unsigned int *)(trigger) = HIGH;

volatile (
"movw r12, #0x4141;" // Repeat for other
"movt r12, #0x4141;" // unused registers
. . .
"mov r7, %[rand];" // Random syscall nr
"swi #0;" // Linux kernel takes over
. . .

*(volatile unsigned int *)(trigger) = LOW;
. . .

Remarks
• This code is running in user space
• Linux syscall: initially random
• Found to be effective: sys getgroups and sys prctl

Controlling PC – Results

Remarks
• We took 12705 experiments in 14 hours
• The success rate between 2.2 µs and 2.65 µs is: 0.63%
• We control the PC in Kernel mode every 10 minutes

Linux kernel pwn #3

DEMO TIME

Controlling PC directly – Successful

Unable to handle kernel paging request at virtual addr 41414140
pgd = 5db7c000..[41414140] *pgd=0141141e(bad)
Internal error: Oops - BUG: 8000000d [#1] PREEMPT SMP ARM
Modules linked in:
CPU: 0 PID: 1280 Comm: control-pc Not tainted <redacted> #1
task: 5d9089c0 ti: 5daa0000 task.ti: 5daa0000
PC is at 0x41414140
LR is at SyS_prctl+0x38/0x404
pc : 41414140 lr : 4002ef14 psr: 60000033
sp : 5daa1fe0 ip : 18c5387d fp : 41414141
r10: 41414141 r9 : 41414141 r8 : 41414141
r7 : 000000ac r6 : 41414141 r5 : 41414141 r4 : 41414141
r3 : 41414141 r2 : 5d9089c0 r1 : 5daa1fa0 r0 : ffffffea
Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA Thumb Segment user
Control: 18c5387d Table: 1db7c04a DAC: 00000015
Process control-pc (pid: 1280, stack limit = 0x5daa0238)
Stack: (0x5daa1fe0 to 0x5daa2000)

What is so special about this attack?

• Load an arbitrary value in any register

• We do not need to have access to source code

• The control flow is fully hijacked

• Software under full control of the attacker

Software fault injection countermeasures are ineffective!

What is so special about this attack?

• Load an arbitrary value in any register

• We do not need to have access to source code

• The control flow is fully hijacked

• Software under full control of the attacker

Software fault injection countermeasures are ineffective!

What can be done about it?

• Fault injection resistant hardware

• Software exploitation mitigations

• Make assets inaccessible from software

Exploitation must be made hard!

What can be done about it?

• Fault injection resistant hardware

• Software exploitation mitigations

• Make assets inaccessible from software

Exploitation must be made hard!

Conclusion
• Fault injection is an effective method to compromise Linux

• All attacks are identified and reproduced within a day

• A new fault injection attack vector discussed

• Full code execution can be reliably achieved

• Exploit mitigation becoming fundamental for fault injection

• Fault injection may be cheaper than software exploitation

Our paper with more details is available soon!11

11
http://conferenze.dei.polimi.it/FDTC17/

http://conferenze.dei.polimi.it/FDTC17/

Conclusion
• Fault injection is an effective method to compromise Linux

• All attacks are identified and reproduced within a day

• A new fault injection attack vector discussed

• Full code execution can be reliably achieved

• Exploit mitigation becoming fundamental for fault injection

• Fault injection may be cheaper than software exploitation

Our paper with more details is available soon!11

11
http://conferenze.dei.polimi.it/FDTC17/

http://conferenze.dei.polimi.it/FDTC17/

Any questions?

Niek Timmers
timmers@riscure.com

(@tieknimmers)

Cristofaro Mune
c.mune@pulse-sec.com

(@pulsoid)

www.riscure.com/careers
inforequest@riscure.com

mailto:timmers@riscure.com
mailto:timmers@riscure.com
mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com
www.riscure.com/careers

