
Cristofaro Mune
(c.mune@pulse-sec.com)
@pulsoid

Advancing FI attacks: Fault Models
opportunities

Password check

A simple password check

Can we bypass
this?

What do you think?

A better view

Traditional fault models

Control flow corruption
by skipping instructions

Data corruption
by flipping bits

Textbook attack

• If the check can be skipped...

• Execution falls through the right case.

- Regardless of the password.

• SUCCESS!

“Instruction skipping”

Case study:

Secure Boot

Secure Boot

Signature

Flash
(Attacker)

Boot stage

Code modified?  Hang

Signature

Flash
(Attacker)

Modified
Boot stage

Executing our code?

Signature

Flash
(Attacker)

Modified
Boot stage

How?

Textbook attack

Glitch here  Signature
bypass

Signature

Flash
(Attacker)

Arbitrary code execution

Modified
Boot stage

“Instruction skipping”

Secure Boot with countermeasures

Double signature check

Flash
(Attacker)

Random delays

Signature

Modified
Boot stage

But still doable!

Two faults (maybe) required

Flash
(Attacker)

Synchronization
more difficult

Signature

Modified
Boot stage

Case study:

Encrypted Secure Boot

Encrypted Secure Boot

Flash
(Normal)

Signature

Boot stage
(encrypted)

FI textbook attack insufficient

Signature bypass useless

Flash
(Normal)

Signature

Modified
Boot stage

Unknown encryption key

Security Certification

• Security Lab report:

- “We have not been able to bypass Secure Boot”

- “SCA attack needed for extracting encryption key

• CC Attack rating goes stellar

- If attack possible at all

• Product is SECURE

Reflections

Instruction...skipping???

• Convenience fault model

- Widely used for characterizing effects on SW execution

• Has limitations:

- Simplistic:

• focused on conditionals, single-point decisions.

- Not realistic:

• Research shows instructions are most likely “corrupted”. Not
skipped.

• Insufficient for precise modeling of attacks aimed at SW
execution.

IN 2018!? SERIOUSLY?

A different fault model

20

Remarks

• Limited control over which bit(s) will be corrupted

• Also includes other fault models as sub-cases (e.g. instruction skipping)

A generic one: “instruction corruption”*

*[FTDC 2016]: Spruyt, Timmers, Witteman

Controlling PC (or SP)

21

• ARM32 has an interesting ISA

• Program Counter (PC) is directly accessible

Attack variations (SP-control) also affect other architectures

Valid ARM instructions

Corrupted ARM instructions may directly set PC

Execution primitives…out of thin air

22

• ANY memory read can be redirected to PC (or SP)

- Hence, ANY memcpy()

• PC (or SP) immediately assigned with content from memory

- Following SW checks may not be executed

• A new target for FI:

- Security checks

- Crypto algorithms

- ...

Code Execution

Example: Secure Boot + countermeasures

Flash
(Attacker)

Glitch here  Code
execution at
stage_addr*

Signature

Modified
Boot stage

stage_addr*10000

Never executed

*also see [FDTC 2016]: Timmers, Spruyt,
Witteman

Analysis

• Assumptions:

- PC directly addressable (e.g. ARM32)

- Attackers knows code location

- Destination memory writable and executable:

• All FI SW countermeasures ineffective

- Fault Code execution transition happens in HW

• More nuanced for code execution achieved via SP-control

24

A SW attacker’s dream...

25

• Like a SW exploit. Without a SW vulnerability.

• ALL SW exploitation techniques fully applicable

- e.g. ROP, JOP, COP,… for SP-control

• SW exploitation mitigations can be effective

Defeating

Encrypted Secure Boot

Attack preparation

• We can apply the same fault model:

- Extends applicability of Timmers, Spruyt, Witteman technique (see
FTDC 2016 presentation)

- Also see Timmers, Spruyt @BlackHat 2016

• Strategy:

- Redirect control flow via PC hijacking Code execution

• In the running context!

- Signature check not executed Secure Boot bypass

- Decryption not executed Plaintext code execution

• Flash boot stage preparation:

- Execution payload

- “Sled” of PC target address

27

ROM code: secure boot + encryption

Flash
(Attacker)

Signature

Payload
(plaintext)

stage_addr*10000

Glitch while loading
pointers  Code exec

at stage_addr*

Never executed

Analysis

• Signature verification not performed

- Secure boot deafeated

• Decryption not performed

- Plaintext code execution

• Code execution achieved in verifying stage context

• ROM-level code execution

29

Countermeasures

• Hardware FI countermeasures fully applicable

- Detect glitch injection or fault generation

• FI SW countermeasures likely not executed

- A successful attack hijacks control flow immediately

• Localized software FI countermeasures are insufficient

− Any instruction is a potential target for corruption

Analysis

• Fully applicable.

• Relevant: Limiting usage of an hijacked control flow

− DEP/NX

− ASLR

− CFI

− …

• Irrelevant: Preventing control flow hijacking:

− Stack cookies

− SEHOP

− …

SW Exploit mitigations

Recommendations

• Use FI HW countermeasures for prevention

- Applicable regardless of fault model

• FI SW countermeasures can only mitigate “classical attacks”

• Adopt modern SW security paradygms:

- SW exploit mitigations

- Defense in depth

- Secure SDLC

- ...

• Learn from:

- SW attackers

- SW and Mobile security industry

33

Final thoughts

A new attack

• Technique for bypassing encrypted secure boot:

- One single fault

- ROM-level code execution

- Arbitrary plaintext payload

- No encryption key needed

35

Advancing FI

• Different fault models can yield dramatically different results

• Simplistic fault modeling can be dangerous:

- High impact attacks may go undetected for decades

• SW execution integrity is critical nowadays:

- Must be fully in scope for FI

• Must also fall scope for modern HW security industry, in general

36

HW & SW security

• HW and SW attacks more intertwined:

- Also see micro-architectural attacks

- Unexpected implications

• HW security industry needs SW security experts

- And viceversa

• We need more “in between” expertise:

- Single domain expertise not sufficient anymore

• Attackers’ and engineers’ perspectives need blending

• Holystic, system-level view needed

37

Finally...

• If your HW and SW security engineering teams...

• do not talk to each other...

38

You are likely doing it wrong.

Cristofaro Mune

Product Security Consultant

Contacts

c.mune@pulse-sec.com

mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com

