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Today’s agenda

• Crash course secure boot on embedded devices

• Crash course fault injection (FI) attacks

• Using simulation to identify FI vulnerabilities
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Why do we need secure boot?
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The real world is more complex!
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Breaking Secure Boot early

• Early boot stage run at the highest privilege

• E.g. unrestricted access

• Security features often not initialized yet

• E.g. access control

• Access assets that are not accessible after boot

• E.g. ROM code and keys
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What makes Secure Boot secure?

Unbreakable cryptography… Right?



25

Flow of a typical boot stage



26

Flow of a typical boot stage

Start



27

Flow of a typical boot stage

Start

Check this



28

Flow of a typical boot stage

Start

Check this

Check that



29

Flow of a typical boot stage

Start

Check this

Check that

Configure this



30

Flow of a typical boot stage

Start

Check this

Check that

Configure this

Configure that



31

Flow of a typical boot stage

Start

Check this

Check that

Configure this

Configure that

Load next stage



32

Flow of a typical boot stage

Start

Check this

Check that

Configure this

Configure that

Load next stage

Decrypt next stage



33

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage



34

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage

Jump to 
next stage?



35

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage

Jump to 
next stage?

Lots of functionality! What can go wrong?



36

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage

Jump to 
next stage?

Lots of functionality! What can go wrong?goes wrong!?
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No authentication!

https://smealum.github.io/3ds/32c3/#/95

https://smealum.github.io/3ds/32c3/#/95
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Software vulnerabilities!

https://seclists.org/oss-sec/2018/q4/125

https://seclists.org/oss-sec/2018/q4/125
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Hardware vulnerabilities! 

https://www.blackhat.com/docs/eu-16/materials/
eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
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Why hardware attacks on secure boot?

• Usually a small code base 

• Limited attack surface

• Should be extensively reviewed

• Difficult / impossible to fix after deployment

Software vulnerabilities not guaranteed to be present!
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VCC

USB

Reset

Voltage Fault Injection in practice
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Let’s do this live on stage!

What could possibly go wrong….
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Fault Injection Demo
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Fault Injection Demo

We do modify the U-Boot in flash.

PWNED

BL1 U-Boot
We do not modify U-Boot in flash.

BL1

BL1

U-Boot

U-Boot
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Successful Glitch!

Want to know more? Please meet us after the talk!
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Why does this work? What goes wrong?

Difficult to answer. But, behaviorally we can say a lot!



71

What can we do with our glitches?



72

What can we do with our glitches?

• Modify memory contents



73

What can we do with our glitches?

• Modify memory contents

• Modify register contents



74

What can we do with our glitches?

• Modify memory contents

• Modify register contents

• Modify the executed instructions!!!



75

What can we do with our glitches?

• Modify memory contents

• Modify register contents

• Modify the executed instructions

We can change the intended behavior of software!

!!!
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Yes. But… difficult & expensive.

What about unglitchable hardware?
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Sure.

What about using only software?
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* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
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Typical Software FI Countermeasures*

• Redundant checks
• Defensive coding
–e.g. initialize return values as ‘error’

• Code flow integrity
– i.e. assure the code follows the intended path

• Random delays
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Typical Software FI Countermeasures*

• Redundant checks
• Defensive coding
–e.g. initialize return values as ‘error’

• Code flow integrity
– i.e. assure the code follows the intended path

• Random delays

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

This sounds easy…

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
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It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!
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Where can we bypass 

secure boot using a glitch?
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We need automation to do this efficiently.
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We?!?
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The challenges of attackers & defenders 

are actually very similar!
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How can I glitch 
this device?

How can my code be 
attacked?

How do I know 
where to glitch?

How can I make my 
code more robust?How do I know 

my glitch was 
succesfull?

How can I give an 
attacker as little 
information as 
possible?

What is the effect of 
this type of glitches 
on my target?

Which attack 
method is better 
for this target?

What is the effect of 
these changes on the 
glitchability?

Attackers vs Defenders
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• No symbols, only the 
binary

• Limited knowledge / 
documentation of 
hardware

Attackers vs Defenders

• Source code and a 
binary with symbols

• Documentation 
available
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• No symbols, only the 
binary

• Limited knowledge / 
documentation of 
hardware

Attackers vs Defenders

Biggest difference:

Attackers need to reverse engineer the binary!

• Source code and a 
binary with symbols

• Documentation 
available
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Our solution?

Simulation!
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• Not a new idea!

• Several existing simulators already available.

• Nonetheless challenging to give useful results...

Simulation
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• Not a new idea!

• Several existing simulators already available.

• Nonetheless challenging to give useful results...

Simulation

Why? Bunch of challenges…



106

No hardware simulator = No fault simulator

Challenge #1

© Icons8.com CC BY-ND 3.0

https://icons8.com/
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Changing the binary is no option.

Challenge #2

© Icons8.com CC BY-ND 3.0

https://icons8.com/


108

Challenge #3

Detecting successful glitches.

© Icons8.com CC BY-ND 3.0

https://icons8.com/
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Challenge #4

Using reasonable computational power.

© Icons8.com CC BY-ND 3.0

https://icons8.com/
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Challenge #5

Realistic simulation.

© Icons8.com CC BY-ND 3.0

https://icons8.com/
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• HDL simulator?

• Full system emulators? (Gem5, QEMU, ...)

• Smartcard simulators ?!?...

• ???

• Our own?!?

What type of simulator do we use?



118

• Main ideas

• Shortest path to reasonable results

• Speed over accuracy

• Reusing existing components

• Binary-based; can be used by attackers and defenders

• Glitches can be modelled by their observable effects in SW

• Effects described through fault models

Introduction to FiSim
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• Unicorn & Capstone based

• Implements 2 realistic* fault models

• Skipping individual instructions

• Flipping a bit in the instruction encoding

• Many more possible, easy to add

FiSim Features

* https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf 

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


120

• Unicorn & Capstone based

• Implements 2 realistic* fault models

• Skipping individual instructions

• Flipping a bit in the instruction encoding

• Many more possible, easy to add

FiSim Features

* https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf 

} corruption

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


121

• Unicorn & Capstone based

• Implements 2 realistic* fault models

• Skipping individual instructions

• Flipping a bit in the instruction encoding

• Many more possible, easy to add

FiSim Features

* https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf 

} corruption

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf
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We tested several real bootloaders successfully!
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We tested several real bootloaders successfully!

Let’s dive into the architectural details…
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FiSim Architecture

https://fontawesome.com/license/free


125
Icons © Font Awesome CC BY 4.0

Hardware model

Engine 
(Unicorn)

Flash dump Bad signature

Good signature

FiSim Architecture

https://fontawesome.com/license/free


126
Icons © Font Awesome CC BY 4.0

(Unicorn)
(Unicorn)Engine 

(Unicorn)
Fault generator

Execution trace

Hardware model

FiSim Architecture

Flash dump (Bad signature)

https://fontawesome.com/license/free


127

Hardware Model
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Hardware Model
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Hardware Model
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Hardware Model
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Hardware Model

Note: attacker needs to hardcode addresses!
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Hardware Model
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FiSim DEMO #1



135

What did we glitch in the first demo?
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What did we glitch in the first demo?

Who knows??!
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What did we glitch in the first demo?

Many possibilities….
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Let’s harden our bootloader…
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What if we authenticate twice?

Let’s harden our bootloader…
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FiSim DEMO #2
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• Is instruction corruption the only fault model?

• We do not know…

• Other fault models likely applicable too!

• What is the impact of instruction / data caches?

Limitations / Future work



142

• Is instruction corruption the only fault model?

• We do not know…

• Other fault models likely applicable too!

• What is the impact of instruction / data caches?

Testing remains critical!

Limitations / Future work
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Takeaways

• Fault attacks are effective to bypass secure boot

• Simulating is effective for attackers and defenders

• Actual testing still required for assurance
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Or come to us…
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