
1

Secure boot under attack:

Simulation to enhance fault injection & defenses

Niek Timmers

Principal Security Analyst

niek@riscure.com / @tieknimmers

Martijn Bogaard

Senior Security Analyst

martijn@riscure.com / @jmartijnb

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:martijn@riscure.com
http://twitter.com/jmartijnb/


2

Today’s agenda



3

Today’s agenda

• Crash course secure boot on embedded devices



4

Today’s agenda

• Crash course secure boot on embedded devices

• Crash course fault injection (FI) attacks



5

Today’s agenda

• Crash course secure boot on embedded devices

• Crash course fault injection (FI) attacks

• Using simulation to identify FI vulnerabilities



6

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel
ROM OTPSRAM

DDR



7

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel
ROM OTPSRAM

DDR
1



8

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel

Boot
code

ROM OTPSRAM

DDR
2 1



9

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel

Boot
code

Kernel
ROM OTPSRAM

DDR
2 1

3



10

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel

Boot
code

Kernel
ROM OTPSRAM

Threat 1:
Hardware Hacker

DDR
2 1

3



11

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel

Boot
code

Kernel
ROM OTPSRAM

Threat 1:
Hardware Hacker

Threat 2:
Malware

DDR
2 1

3



12

Why do we need secure boot?

Processor

Boot
code

System-on-Chip

Flash

Kernel

Boot
code

Kernel
ROM OTPSRAM

Secure boot assures integrity of code/data in cold storage!

Threat 1:
Hardware Hacker

Threat 2:
Malware

DDR
2 1

3



13

The real world is more complex!



14

The real world is more complex!

ROM

EL3

Secure World Higher privileges Lower privileges



15

The real world is more complex!

ROM BLx

EL3

Secure World 

EL1

Higher privileges Lower privileges



16

The real world is more complex!

ROM ATFBLx

EL3

Secure World 

EL1 EL3

Higher privileges Lower privileges



17

The real world is more complex!

ROM

U-Boot

ATFBLx

EL3

Secure World 

EL1

Non-Secure World

EL1 EL3

Higher privileges Lower privileges



18

The real world is more complex!

ROM

U-Boot

ATF TEE OS TEE Apps

Boot finished!

Linux Apps

BLx

Linux Kernel

EL3 EL1 EL0

Secure World 

EL1 EL1 EL0

Non-Secure World

EL1 EL3

The chain can break at any stage. Early is better!

Higher privileges Lower privileges



19

Breaking Secure Boot early



20

Breaking Secure Boot early

• Early boot stage run at the highest privilege

• E.g. unrestricted access



21

Breaking Secure Boot early

• Early boot stage run at the highest privilege

• E.g. unrestricted access

• Security features often not initialized yet

• E.g. access control



22

Breaking Secure Boot early

• Early boot stage run at the highest privilege

• E.g. unrestricted access

• Security features often not initialized yet

• E.g. access control

• Access assets that are not accessible after boot

• E.g. ROM code and keys



23

What makes Secure Boot secure?



24

What makes Secure Boot secure?

Unbreakable cryptography… Right?



25

Flow of a typical boot stage



26

Flow of a typical boot stage

Start



27

Flow of a typical boot stage

Start

Check this



28

Flow of a typical boot stage

Start

Check this

Check that



29

Flow of a typical boot stage

Start

Check this

Check that

Configure this



30

Flow of a typical boot stage

Start

Check this

Check that

Configure this

Configure that



31

Flow of a typical boot stage

Start

Check this

Check that

Configure this

Configure that

Load next stage



32

Flow of a typical boot stage

Start

Check this

Check that

Configure this

Configure that

Load next stage

Decrypt next stage



33

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage



34

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage

Jump to 
next stage?



35

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage

Jump to 
next stage?

Lots of functionality! What can go wrong?



36

Flow of a typical boot stage

Start

Check this

Check that

Configure this Authenticate next stage

Configure that

Load next stage

Decrypt next stage

Jump to 
next stage?

Lots of functionality! What can go wrong?goes wrong!?



37

No authentication!

https://smealum.github.io/3ds/32c3/#/95

https://smealum.github.io/3ds/32c3/#/95


38

Software vulnerabilities!

https://seclists.org/oss-sec/2018/q4/125

https://seclists.org/oss-sec/2018/q4/125


39

Hardware vulnerabilities! 

https://www.blackhat.com/docs/eu-16/materials/
eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf

https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Timmers-Bypassing-Secure-Boot-Using-Fault-Injection.pdf


40

Why hardware attacks on secure boot?



41

Why hardware attacks on secure boot?

• Usually a small code base 



42

Why hardware attacks on secure boot?

• Usually a small code base 

• Limited attack surface



43

Why hardware attacks on secure boot?

• Usually a small code base 

• Limited attack surface

• Should be extensively reviewed



44

Why hardware attacks on secure boot?

• Usually a small code base 

• Limited attack surface

• Should be extensively reviewed

• Difficult / impossible to fix after deployment



45

Why hardware attacks on secure boot?

• Usually a small code base 

• Limited attack surface

• Should be extensively reviewed

• Difficult / impossible to fix after deployment

Software vulnerabilities not guaranteed to be present!



46

Voltage Fault Injection in practice



47

Voltage Fault Injection in practice



48

Voltage Fault Injection in practice



49

Voltage Fault Injection in practice



50

Voltage Fault Injection in practice



51

Voltage Fault Injection in practice



52

Voltage Fault Injection in practice



53

Voltage Fault Injection in practice



54

Voltage Fault Injection in practice



55

USB

Voltage Fault Injection in practice



56

VCC

USB

Voltage Fault Injection in practice



57

VCC

USB

Reset

Voltage Fault Injection in practice



58

time



59

time



60

1.2 V

0.9 V

time



61

1.2 V

0.9 V

time



62

1.2 V

0.9 V

time



63

Let’s do this live on stage!

What could possibly go wrong….



64

Fault Injection Demo



65

Fault Injection Demo

BL1 U-Boot
We do not modify U-Boot in flash.



66

Fault Injection Demo

We do modify the U-Boot in flash.

BL1 U-Boot
We do not modify U-Boot in flash.

BL1 U-Boot



67

Fault Injection Demo

We do modify the U-Boot in flash.

BL1 U-Boot
We do not modify U-Boot in flash.

BL1

BL1

U-Boot

U-Boot



68

Fault Injection Demo

We do modify the U-Boot in flash.

PWNED

BL1 U-Boot
We do not modify U-Boot in flash.

BL1

BL1

U-Boot

U-Boot



69

Successful Glitch!

Want to know more? Please meet us after the talk!



70

Why does this work? What goes wrong?

Difficult to answer. But, behaviorally we can say a lot!



71

What can we do with our glitches?



72

What can we do with our glitches?

• Modify memory contents



73

What can we do with our glitches?

• Modify memory contents

• Modify register contents



74

What can we do with our glitches?

• Modify memory contents

• Modify register contents

• Modify the executed instructions!!!



75

What can we do with our glitches?

• Modify memory contents

• Modify register contents

• Modify the executed instructions

We can change the intended behavior of software!

!!!



76

What about unglitchable hardware?



77

Yes. But… difficult & expensive.

What about unglitchable hardware?



78

What about using only software?



79

Sure.

What about using only software?



80

Typical Software FI Countermeasures*

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf


81

Typical Software FI Countermeasures*

• Redundant checks

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf


82

Typical Software FI Countermeasures*

• Redundant checks
• Defensive coding
–e.g. initialize return values as ‘error’

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf


83

Typical Software FI Countermeasures*

• Redundant checks
• Defensive coding
–e.g. initialize return values as ‘error’

• Code flow integrity
– i.e. assure the code follows the intended path

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf


84

Typical Software FI Countermeasures*

• Redundant checks
• Defensive coding
–e.g. initialize return values as ‘error’

• Code flow integrity
– i.e. assure the code follows the intended path

• Random delays

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf


85

Typical Software FI Countermeasures*

• Redundant checks
• Defensive coding
–e.g. initialize return values as ‘error’

• Code flow integrity
– i.e. assure the code follows the intended path

• Random delays

* https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

This sounds easy…

https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf


86

It is not.



87

It is not.



88

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



89

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



90

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



91

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



92

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



93

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



94

It is not.

Redundant checks needs multiple glitches?
Remember, we can modify instructions using glitches!



95

Where can we bypass 

secure boot using a glitch?



96

We need automation to do this efficiently.



97

We?!?



98

The challenges of attackers & defenders 

are actually very similar!



99

How can I glitch 
this device?

How can my code be 
attacked?

How do I know 
where to glitch?

How can I make my 
code more robust?How do I know 

my glitch was 
succesfull?

How can I give an 
attacker as little 
information as 
possible?

What is the effect of 
this type of glitches 
on my target?

Which attack 
method is better 
for this target?

What is the effect of 
these changes on the 
glitchability?

Attackers vs Defenders



100

• No symbols, only the 
binary

• Limited knowledge / 
documentation of 
hardware

Attackers vs Defenders

• Source code and a 
binary with symbols

• Documentation 
available



101

• No symbols, only the 
binary

• Limited knowledge / 
documentation of 
hardware

Attackers vs Defenders

Biggest difference:

Attackers need to reverse engineer the binary!

• Source code and a 
binary with symbols

• Documentation 
available



102

Our solution?



103

Our solution?

Simulation!



104

• Not a new idea!

• Several existing simulators already available.

• Nonetheless challenging to give useful results...

Simulation



105

• Not a new idea!

• Several existing simulators already available.

• Nonetheless challenging to give useful results...

Simulation

Why? Bunch of challenges…



106

No hardware simulator = No fault simulator

Challenge #1

© Icons8.com CC BY-ND 3.0

https://icons8.com/


107

Changing the binary is no option.

Challenge #2

© Icons8.com CC BY-ND 3.0

https://icons8.com/


108

Challenge #3

Detecting successful glitches.

© Icons8.com CC BY-ND 3.0

https://icons8.com/


110

Challenge #4

Using reasonable computational power.

© Icons8.com CC BY-ND 3.0

https://icons8.com/


111

Challenge #5

Realistic simulation.

© Icons8.com CC BY-ND 3.0

https://icons8.com/


112

What type of simulator do we use?



113

• HDL simulator?

What type of simulator do we use?



114

• HDL simulator?

• Full system emulators? (Gem5, QEMU, ...)

What type of simulator do we use?



115

• HDL simulator?

• Full system emulators? (Gem5, QEMU, ...)

• Smartcard simulators ?!?...

What type of simulator do we use?



116

• HDL simulator?

• Full system emulators? (Gem5, QEMU, ...)

• Smartcard simulators ?!?...

• ???

What type of simulator do we use?



117

• HDL simulator?

• Full system emulators? (Gem5, QEMU, ...)

• Smartcard simulators ?!?...

• ???

• Our own?!?

What type of simulator do we use?



118

• Main ideas

• Shortest path to reasonable results

• Speed over accuracy

• Reusing existing components

• Binary-based; can be used by attackers and defenders

• Glitches can be modelled by their observable effects in SW

• Effects described through fault models

Introduction to FiSim



119

• Unicorn & Capstone based

• Implements 2 realistic* fault models

• Skipping individual instructions

• Flipping a bit in the instruction encoding

• Many more possible, easy to add

FiSim Features

* https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf 

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


120

• Unicorn & Capstone based

• Implements 2 realistic* fault models

• Skipping individual instructions

• Flipping a bit in the instruction encoding

• Many more possible, easy to add

FiSim Features

* https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf 

} corruption

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


121

• Unicorn & Capstone based

• Implements 2 realistic* fault models

• Skipping individual instructions

• Flipping a bit in the instruction encoding

• Many more possible, easy to add

FiSim Features

* https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf 

} corruption

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


122

We tested several real bootloaders successfully!



123

We tested several real bootloaders successfully!

Let’s dive into the architectural details…



124
Icons © Font Awesome CC BY 4.0

Hardware model

Engine 
(Unicorn)

Flash dump

Console output
(if any)

Execution trace

FiSim Architecture

https://fontawesome.com/license/free


125
Icons © Font Awesome CC BY 4.0

Hardware model

Engine 
(Unicorn)

Flash dump Bad signature

Good signature

FiSim Architecture

https://fontawesome.com/license/free


126
Icons © Font Awesome CC BY 4.0

(Unicorn)
(Unicorn)Engine 

(Unicorn)
Fault generator

Execution trace

Hardware model

FiSim Architecture

Flash dump (Bad signature)

https://fontawesome.com/license/free


127

Hardware Model



128

Hardware Model



129



130

Hardware Model



131

Hardware Model



132

Hardware Model

Note: attacker needs to hardcode addresses!



133

Hardware Model



134

FiSim DEMO #1



135

What did we glitch in the first demo?



136

What did we glitch in the first demo?

Who knows??!



137

What did we glitch in the first demo?

Many possibilities….



138

Let’s harden our bootloader…



139

What if we authenticate twice?

Let’s harden our bootloader…



140

FiSim DEMO #2



141

• Is instruction corruption the only fault model?

• We do not know…

• Other fault models likely applicable too!

• What is the impact of instruction / data caches?

Limitations / Future work



142

• Is instruction corruption the only fault model?

• We do not know…

• Other fault models likely applicable too!

• What is the impact of instruction / data caches?

Testing remains critical!

Limitations / Future work



143

Takeaways



144

Takeaways

• Fault attacks are effective to bypass secure boot



145

Takeaways

• Fault attacks are effective to bypass secure boot

• Simulating is effective for attackers and defenders



146

Takeaways

• Fault attacks are effective to bypass secure boot

• Simulating is effective for attackers and defenders

• Actual testing still required for assurance



147Secure boot under attack: Simulation to enhance fault injection & defenses

Thank you! Any questions?
Or come to us…

Martijn Bogaard

Senior Security Analyst

martijn@riscure.com / @jmartijnb

Niek Timmers

Principal Security Analyst

niek@riscure.com / @tieknimmers

mailto:martijn@riscure.com
http://twitter.com/jmartijnb/
mailto:niek@riscure.com
https://twitter.com/tieknimmers

