HARDENING SECURE BOOT ON
EMBEDDED DEVICES FOR
HOSTILE ENVIRONMENTS

rISCuUre = s = D) |
Niek Timmers Albert Spruyt Cristofaro Mune
niek@riscure:com albert.spruyt@gmail.com c.mune@pulse-sec.com

@tieknimmers @pulsoid

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:albert.spruyt@gmail.com
mailto:c.mune@pulse-sec.com
https://twitter.com/pulsoid

WHY THIS TALK?

SOME HISTORY...

Bypassing Secure

Boot using Fault

Injection @ Black Nintendo Switch
Hat Europe

20 ways past
secure boot @
HITB KUL

Console Hacking

Hacking the Xbox 2010 @ 27c3

0 0 0 O b @ 0 O 0

Secure
Initialization of
Hacking the Xbox 360 reset Hacking Nintendo TEEs; when
iPhone @ 25c¢3 glitch 2016 @ 33c3 secure boot falls
short @
Euskalhack

SECURE BOOT IS STILL OFTEN VULNERABLE...

OUR GOAL

Create a Secure Boot guidance for
designers, implementers and integrators.

WHITE PAPER

"Notes on Designing Secure Boot."”

We are working on it!

THIS PRESENTATION

Offensive focus
Known and new attacks

New perspectives

AGENDA

Introduction
Secure Boot
Attacks and Mitigations
Demo

IELGCEVENR

GENERIC DEVICE

System-on-a-Chip

Device is turned off

GENERIC DEVICE

System-on-a-Chip

ROM code loads BL1 into internal SRAM

GENERIC DEVICE

System-on-a-Chip

BL1 initializes DDR and loads BL2 into DDR

GENERIC DEVICE

System-on-a-Chip

And then, more is loaded and executed...

TWO MAJOR THREATS...

ATTACKERS

System-on-a-Chip

Attacker 1: hardware hacker modifies flash

ATTACKERS

System-on-a-Chip

Attacker 2: (remote) software hacker modifies flash

THEREFORE WE NEED SECURE BOOT

SECURE BOOT

e Authentication of loaded images
e Root of trust embedded in hardware

= j.e.immutable code and data (e.g. ROM, OTP)

SECURE BOOT

System-on-a-Chip

ROM has copied BL1 to SRAM

SECURE BOOT

Flash System-on-a-Chip
BL1

Signature |

BL2

SRAM

BL1

Signature |

ROM calculates the BL1 hash

SECURE BOOT

Flash System-on-a-Chip
BL1

Signature |

BL2

SRAM

BL1

Signature |

ROM compares the hash against the reference from the signature

SECURE BOOT

System-on-a-Chip

BL1 is executed

THE REAL WORLD ISALITTLE MORE COMPLEX...

SECURE BOOT FLOW

TEE REE
bootloader bootloader

Hardware Bootloader

SECURE BOOT FLOW

Privileges change/drop during boot.

TEE REE

Hardware Bootloader |, tioader bootloader

SECURE BOOT FLOW

Privileges change/drop during boot.

Can be updated.

Bootloader bootloader bootloader

SECURE BOOT FLOW

Privileges change/drop during boot.

Can be updated.

Bootloader bootloader

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Lots of different interests!

MITIGATING THREATS

e Moditying code/data in flash
e |[nsecure updates

e Creating a persistent foothold

e Access to keys, code and crypto engines

e Escalating privileges (e.g. REE to TEE)

ATTACK SURFACE

Broken
design

OR

Broken

implementation

ATTACK SURFACE

Broken Broken
design software

OR OR

Broken Broken
implementation hardware

WHAT GOES WRONG IN THE FIELD...

Amlogic S905 SoC BootROM vulnerability

Broken Broken I C ‘ﬁei:. hic
design software ryptograp
options
OR OR

Broken Broken

implementation hardware

Secure Boot is bypassed, and BootROM is dumped, by downgrading from RSA to SHA

Credit: fredericb

https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

MITIGATIONS:

e Do not support weak cryptographic options

e Limitthe amount of options

Nintendo Switch BootROM vulnerability

- L = = == == Buffer overflow
I software
I
OR I
I
Broken _ 1 Broken
implementation hardware

Buffer overflow in the USB recovery mode

Credit: failOverflow and Cease & DeSwitch

https://github.com/Cease-and-DeSwitch/fusee-launcher
https://github.com/Cease-and-DeSwitch/fusee-launcher

MITIGATIONS:

e Write secure software ;)
e Make software exploitation hard
m j.e. stack cookies, ASLR, CFl, etc.
= Use memory protections to enforce WAX

> e.g. MPU, MMU, IOMMU, etc.

SWITCH FAULT INJECTION

Broken

software

OR OR
Broken Broken o
., W= == == omm o = == == = Fault Injection
Implementation hardware

SKIP HASH VERIFICATION USING VOLTAGE FAULT INJECTION

FAULT INJECTION (FI)

e Make glitches with e.g.: EM, light, clock, power, heat
e Use a glitch to introduce a fault in a device
e Model faults:

= |nstruction skipping

= |nstruction/data corruption

FIALTERS THE INTENDED BEHAVIOR OF HW AND SW

FAULT INJECTION MITIGATIONS

e Software
» Redundancy (e.g. double checks)
= Random delays
e Hardware
= Redundancy
» Glitch detectors

m Clock randomization

Viva La Vita Vida fault injection attack

Broken

software

OR OR
Broken Broken o
., W= == == omm o = == == = Fault Injection
Implementation hardware

Introducing a classic buffer overflow using Voltage Fault Injection

Credit: Yifan Lu and Davee @ 35c3

https://media.ccc.de/v/35c3-9364-viva_la_vita_vida

MITIGATIONS:
It's Fault injection so use FI mitigations

It's Software exploit so use exploit mitigations

DESIGNING SECURE BOOT AINT EASY!

ESPECIALLY CONSIDERING THE CONSTRAINTS...
Initializing hardware
Interfacing with peripherals
Performance
Code size
Keeping engineering cost low
Recoverability

Customer needs

IT'S IMPORTANT TO GET IT RIGHT

WRONG SECURITY IS EXPENSIVE

Tape out
Crisis management
PR damage
Time to market
Recall of devices/unsold inventory

Additional engineering time

HAS THE WORLD SEEN IT ALL?

FAULT INJECTION ON OTP TRANSFER

Broken Broken
design software

OR OR
Broken Broken T
, 2 Zwm == == o= om = == == = Fault Injection
Implementation hardware

Attacking Secure Boot before any code is executed!

LET'S LOOK AT THIS ONE IN DETAIL

OTP AND SECURE BOOT

Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Privileges change/drop during boot.

ROM code uses values from OTP for enabling/disabling security features.

EXAMPLE

memcpy (I SRAM, I FLASH, I SIZE); // 1. Copy image
memcpy (S SRAM, S FLASH, S SIZE); // 2. Copy signature
if (* (OTP SHADOW) >> 17 & Ox1) { // 3. Check if enabled
if (SHA256 (I SRAM, I SIZE, I HASH)) // 4. Calculate hash
while (1) ;
J
if (verify (PUBKEY, S SRAM, I HASH)) { // 5. Verify image
while (1) ;
J
}
Jump () ; // 6. Jump to next image

Value stored in shadow registers. Populated by OTP Transfer.

POPULATING SHADOW REGISTERS

Can be updated.

Bootloader bootloader

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Privileges change/drop during boot.

OTP Transfer performed in hardware. BEFORE any ROM code is executed.

OTP TRANSFER 1/5

System-on-Chip

A typical System-on-Chip (SoC)

OTP TRANSFER 2/5

System-on-Chip

OTP phy

OTP BANK 1
OTP BANK 2
OTP BANK 3
OTP BANK 4

OTP BANK ...

Contains a special OTP hardware block

OTP TRANSFER 3/5

System-on-Chip
OTP phy
OTP BANK 1

OTP BANK 2
CMD/RSP

OoTP
OTP BANK 3 () controller

OTP BANK 4

OTP BANK ...

Which is wrapped by a hardware controller

OTP TRANSFER 4/5

System-on-Chip

OTP phy Shadow registers

OTP BANK 1 Register 1

OTP BANK 2 Register 2
CMD/RSP

OTP :
OTP BANK 3 (—) controller Register 3

OTP BANK 4 Register 4

OTP BANK ... Register ...

This controller copies the OTP values to dedicated registers after SoC reset

OTP TRANSFER 5/5

System-on-Chip

OTP phy Shadow registers

OTP BANK 1 Register 1

OTP BANK 2 Register 2
CMD/RSP

OTP :
OTP BANK 3 (—) controller Register 3

OTP BANK 4 Register 4

OTP BANK ... Register ...

CPU is released from reset. Shadow registers can be read using system bus.

WHERE CAN WE ATTACK?

ANYWHERE!

System-on-Chip

OTP phy Shadow registers

OTP BANK 1 Register 1

’/ N\

OTP BANK 2 ’ \ Register 2

/CMD/RSP'

\
I | oTP -
OTP BANK 3 | | € | .ontroller Register 3
\ I

\
OTP BANK 4 Register 4

N\

OTP BANK ... Register ...

Attack the bus between the OTP PHY and the OTP controller.

ANYWHERE!

System-on-Chip

OTP phy Shadow registers

OTP BANK 1 Register 1

-
’

OTP BANK 2 ’ Register 2

/ \ YK/ \
,/CMD/RSP' |

I controller

\
OTPBANK3 | |g—— | 9OTF | Register 3
\ n I

\
OTP BANK 4 \ Register 4

N\

OTP BANK ... Register ...

Attack the OTP controller directly.

ANYWHERE!

System-on-Chip

OTP phy Shadow registers

Register 1

Register 2

I

| / :
€ » | controller i Register 3
\

n

‘CMD/RSP'

\
\ Register 4

Register ...

Attack the bus between the OTP controller and the shadow registers.

WE CAN AFFECT

SIGNATURE VERIFICATION

AND/OR

STAGE ENCRYPTION

BYPASSING

(ENCRYPTED) SECURE BOOT

THAT WAS FUN; LET'S DO ANOTHER ONE!

FAULT INJECTION ON ENCRYPTED SECURE BOOT

Broken Broken
design software

OR OR
Broken Broken o
, 2 Zwm == == omm om m— == == = Fault Injection
Implementation hardware

...WITHOUT AN ENCRYPTION KEY!

memcpy (I SRAM,
memcpy (S SRAM,

SIGNATURE VERIFICATION

I FLASH,
S FLASH,

if (* (OTP SHADOW)
if (SHA256 (I SRAM, I SIZE,

while (1)

°
4

>> 17 & 0x1)

if (verify (PUBKEY, S SRAM,

Jump () ;

while (1)

4

I SIZE);
S SIZE) ;

{
I HASH))

I HASH))

{

{

// 1.
2.

//

//
//

//

//

Copy 1mage

Copy signature

Check 1f enabled
Calculate hash

Verify 1image

Jump to next 1mage

FAULT INJECTION FAULT MODEL

"Instruction skipping”

e Faults can cause "instruction not to be executed"
e |naccurate but sufficient
e Widely adopted (by academia and industry)

e Useful for affecting the code flow

LET'S USE IT FOR BYPASSING SECURE BOOT!

A TEXTBOOK ATTACK 1/3

System-on-a-Chip

Device is turned off

A TEXTBOOK ATTACK 2/3

System-on-a-Chip

Replace BL1 with a malicious image

A TEXTBOOK ATTACK 3/3

memcpy (I SRAM, I FLASH, I SIZE); // 1. Copy image
memcpy (S SRAM, S FLASH, S SIZE); // 2. Copy signature
if (* (OTP_SHADOW) >> 17 & 0x1) { // 3. Check if enabled
if (SHA256 (I SRAM, I SIZE, I HASH)) { // 4. Calculate hash
while (1) ;
J
if(verify (PUBKEY, S SRAM, I HASH)) { // 5. Glitch here!
while (1) ;
J
J
Jump () ; // 6. Jump to next image

Skip verify function call and boot an malicious image

GLITCH AT THE RIGHT MOMENT AND PROFIT!

WHAT IF BL1 IS ENCRYPTED?

ENCRYPTED SECURE BOOT

memcpy (I SRAM, I FLASH, I SIZE); // 1. Copy image
decrypt (SYM KEY, I SRAM, I SIZE); // NEW: Decrypt image
memcpy (S SRAM, S FLASH, S SIZE); // 2. Copy signature
if (* (OTP SHADOW) >> 17 & Ox1) { // 3. Check if enabled
if (SHA256 (I SRAM, I SIZE, I HASH)) { // 4. Calculate hash
while (1) ;
}
if (verify (PUBKEY, S SRAM, I HASH)) { // 5. Glitch here!
while (1) ;
}
}
jump () ; // 6. Jump to next image

The image is decrypted after it is copied and before it is verified!

THE MISSING KEY...

Encryption key needed for creating a malicious image

THAT'S WHY...

FI attacks are often considered infeasible when
encrypted Secure Boot is used.

UNTIL NOW!

FAULT INJECTION FAULT MODEL

"Instruction corruption”

e Faults can modify instructions
e Destination register could be changed
e Fairly new application

e Great for modifying code and getting control

BYPASSING ENCRYPTED SECURE BOOT 1/4

System-on-a-Chip

Device is turned off.

BYPASSING ENCRYPTED SECURE BOOT 2/4

Flash System-on-a-Chip

Code
Pointers
BL2

Replace encrypted BL1 with plain text code and pointers to SRAM.

BYPASSING ENCRYPTED SECURE BOOT 3/4

Flash System-on-a-Chip

Code
Pointers CPU

BL2

SRAM

Code
Pointers

Glitch is injected after code copy and while pointers are being copied.

BYPASSING ENCRYPTED SECURE BOOT 4/4

memcpy (I SRAM, I FLASH, I SIZE); // Glitch here!
decrypt (SYM KEY, I SRAM, I SIZE); // Before decryption
memcpy (S SRAM, S FLASH, S SIZE); // and

if (SHA256 (I SRAM, I SIZE, I HASH)) { // before
while (1) ;
}

if (verify (PUB KEY, S SRAM, I HASH)) { // verification!
while (1) ;
}

Jjump () ; // CPU will never reach here

Glitch during pointers copy to assign a pointer to the program counter (PC).

RESULTING CODE EXECUTION

memcpy (I SRAM, I FLASH, I SIZE);

((void *) ()) (pointer) ();

Control flow is hijacked. The decryption and verification of the image is bypassed!

CONCRETELY SAID...

WE TURN

ENCRYPTED SECURE BOOT

INTO

PLAINTEXT UNPROTECTED BOOT

USING

A SINGLE GLITCHAND NO KEY!

PWN3D!

e Timing no so relevant
e Full PC control

e Bypass any SW Fl countermeasure

FAULT INJECTION DEMO

ON ENCRYPTED SECURE BOOT!

Important:
We are attacking a demo implementation!

FAULT INJECTION SETUP

Riscure Spider (Glitcher)

You can use NewAE's ChipWhisperer too!

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Riscure Spider (Glitcher)

You can use NewAE's ChipWhisperer too!

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Serial

Riscure Spider (Glitcher) STM32F4 Development Board

You can use NewAE's ChipWhisperer too!

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Serial

()

Voltage m—

Riscure Spider (Glitcher) STM32F4 Development Board

You can use NewAE's ChipWhisperer too!

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Serial

()

Voltage m—

Reset

Riscure Spider (Glitcher) STM32F4 Development Board

You can use NewAE's ChipWhisperer too!

https://newae.com/tools/chipwhisperer/

REAL WORLD FI SETUP

L& 7
Tochnology

<

B 8

2

Chocked

gy

Jayjjdwy Y319

Even for simple setups there are cables everywhere...

FLASH IMAGE MODIFICATION

VALID IMAGE MALICIOUS IMAGE

Hardware Hardware

Q0040000

AL JELELELE
I
00040010

Q004340020

ERFLE e

[
[]

o

éb.1l¢QruH. ..L8U- 00040000
D=(."s!.D.bERk 00040010
Q0045 |

s

; : -
Q0040030

oW o

1

o

: iy
0040030

T
00430

oy Ll L

k]

[y
= I Ln

[

v
[
Lad

L

[
B L ()
Fel ma
=1 =

1 et

[Te]
LLd

Ve BT
i
[T L |

5. .Thank you

for inviting us!

k]

=
v
1
[I I s T b

O |
in
LI
L L
4]

[J%]
=
i
i
i

J R
k|

o N T i e = O e T 3
i i R

[

L e n
=B
L

.F.F.F.F.F.F.F.F

Il «
=

hl”
=l

v I e T e I

Tl O T R b R W)
=

i L L Lad
i

Q0040020
Q00400C0
Q0040000
O00400EQ

A
Q0049400FQ

s £

0040020
Q004900C0
Q0040000
O00400EQ

T
O004900FQ

[T T T]

[T+
IS R = I I
oo N =
i e

B Ll
(I e I |
(4%
1 13 /o) o L=
(e o]
i
T
e

L

]

I
[
= h]
=
[
[]
Ll
:| i '

L
=
Fud
n

BL1 loads, decrypts and BL1 loads, decrypts but
authenticates BL2 successfully fails to authenticate BL2

FLASH IMAGE MODIFICATION

VALID IMAGE MALICIOUS IMAGE

Hardware Hardware

Q0040000 ;

AL JELELELE
I
00040010

Q004340020

ERFLE e

T
00 46 00 485 00 4

NOPsbd

o
00 4

[
[]

o

éb.1l¢QruH. ..L8U- 00040000
D=(."s!.D.bERk 00040010
Q0045 |

s

; : -
Q0040030

oW o

1

o A
00 4¢

: iy
0040030

T
00430

oy Ll L

44 Fi
01

o
ag (:
=

24

»

|

ra

w

k]

03 C4
B F4

0 28 F
9
de-

[y
= I Ln

[
Lad

L

]
B L ()
=1 =

[Te]
LLd

Ve <]
i

[z, . Thank wyou

oy U

i
e ma

L
F
F

o

5 74

v

for inviting us!

L3
L
4]

E -

i |

Fd
[
F
F

o I

[]

o N T i e = O e T 3
i i R

.F.F.F.F.F.F.F.F

Il «
=

hl”
=l

v I e T e I

Tl O T R b R W)
=

i L L Lad
i

Q0040020
Q00400C0
Q0040000
O00400EQ

A
Q0049400FQ

s £

0040020
Q004900C0
Q0040000
O00400EQ

T
O004900FQ

(=
[T T T]

Lnoony :II 1
i e
P Ll
(I e I |
(4%
i
i

1 o
I
[
I}
T
Ll
:|I (=]

L
=
Fud
n

BL1 loads, decrypts and BL1 loads, decrypts but
authenticates BL2 successfully fails to authenticate BL2

TARGET BEHAVIOR

Valid image

Successfully started.

: Loading BLZ2 successful.

Decrypting BLZ2 successful.

: Authenticating BLZ2 successful.

Jumping to BLZ2...
Successfully started.

Malicious image

Successfully started.

: Loading BLZ2 successful.

Decrypting BLZ2 successful.

: Authenticating BLZ2 unsuccessful. Stopping!

Let's bypass it using fault injection!

LET'S SWITCH TO THE OTHER LAPTOP

OSCILLOSCOPE 1/2

> || || | 4| 170f17
Off G Qff

Running | = | I | Trigger Repeat - f AT 1 9,349 % Measurements |] |F'.u|r:r:; |3 MNotes |:

We reset the chip for each experiment.

OSCILLOSCOPE 2/2

Measurements |] |F'.u|r:r:; |3 Notes |:

We inject the glitch during the copy of BL2 by BL1.

FIPY 1/3

& FIpy

< C @ localhost:808(

FISCUrQ@ =Browser ¥Run @ Dashboard 'O History & Documentation
Dashboard Q Analyze > Console J Change parameters M Stop MM Restart Wl Pause &.lsec &5sec o= Off Status
id glitch_delay glitch voltage glitch length Data Color Active bluehatil?e15 encrypted boot_demo_1.py
script
. 12276 44082 1.6512 1405 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4 :
[BL1]: Authenticating BL2 unsuccesful. Stopping.\n Status (iRAING)
. 12275 139318 1.6236 1015 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4 Runtime 01:05:20
[BL1]: authenticating BLZ unsuccesful. Stopping.'n Total 12305 (3.1/s)
B 12274 197270 24543 1227 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4 attempts
[BL1]: muthenticating BLZ unsuccesful. Stopping.\n Results @ 10532 (85.50%)
. 12273 156778 23459 744 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4 @ 1035 (841%)
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n '_
397 3.23 %
. 12272 32745 221 1130 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BL2 successful.\n 4 [)
[BL1]: suthenticating BLZ unsuccesful. Stopping.'n P 234 (190%)
. 12271 190417 NIE 1496 [BL1]: Successfully started.\n[BL1]: Loading BL2Z successful.\n[BL1]: Decrypting BL2 successful.\n 4 @ 107 (0.87 %)
[BL1]: Authenticating BLZ unsuccesful. Stopping.'n
. 12270 131829 1.7707 1071 [BL1]: Successfully started.\n[BL1]: Loading BL2Z successful.\n[BL1]: Decrypting BL2 successful.\n 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n Settings
. 12269 44625 16411 1183 [BL1]: successfully started.\n[BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: 5
pecrypting BL2? successful.\n[BL1]: authenticating BLZ unsuccesful. stopping.\n
. 12268 33465 16372 1396 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BLZ successful.\n 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12267 208641 1.8313 1465 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12266 21400 2.1982 1030 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BLZ successful.\n 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
@ 12265 203709 21257 1405 [BL1]: Successfully started.\n[EL1]: Loading BL2 successful.\n[BL1]: Decrypting BL2 successful.\n 4 Training2-PC - FIPy revision 3118938 (18113015) - Python 3.68

Experiments that had no affect on the target are colored green.

FIPY 2/3

C (@ localhost:8080/dashbc

FISCUrQC =eBrowser ¥Run @ Dashboard 'O History & Documentation
Dashboard Q Analyze »_Console J Change parameters Wl Stop MM Restart Wl Pause Z.dsec & 5sec & Off Status
id glitch_delay glitch voltage glitch length Data Color Active bluehatil?e15 encrypted boot_demo_1.py
script
. 12877 154309 1.9387 1164 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4 .
[BL1]: Authenticating BL2 unsuccesful. Stopping.\n Status (iRm0
. 12876 14852 2.0385 960 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4 Runtime 01:08:37
[BL1]: authenticating BLZ unsuccesful. Stopping.'n Total 12895 (3.1/s)
B 12875 41774 2.0832 1302 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4 attempts
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n Rezults . 11028 (85.52 %)
12874 248588 17791 868 [BL1]: successfully started.\nPrinting stack values...\n\x8ére \teseeealf\nri \tesezafaa\nrz \teea 7 @ 1095 (849 %)
= B F,
eeeas\nr3 \t18028880\nr12 eeeoesee\nlr \t83888235\npc \itese2afal\npsr 20000280°\n[BL1]: Successfully .
started.\n[BL1]: Loading BL2? successful.\n[BL1]: Decrypting BL2? successful.\n[BL1]: authenticating B 414 (3.21 %)
L2 unsuccesful. Stopping.\n P 247 (192 %)
. 12873 84387 1.9551 149 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BLZ successful.\n 4 @ 111(086%)
[BL1]: Authenticating BL2 unsuccesful. Stopping.\n e
. 12872 231344 1.8917 1109 [BL1]: Successfully started.\n[BL1]: Loading BL2Z successful.\n[BL1]: Decrypting BL2 successful.\n 4
[BL1]: Authenticating BL2 unsuccesful. Stopping.\n :
Settings
. 12871 165112 2.208 1265 [BL1]: Successfully started.\n[BL1]: Loading BL2Z successful.\n[BL1]: Decrypting BL2 successful.\n 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12870 107311 23025 1178 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4
[BL1]: authenticating BLZ unsuccesful. Stopping.'n
. 12869 228505 20327 754 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BLZ successful.\n 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
@ 12868 1065 215149 1171 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12867 96109 1.8846 1426 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BLZ successful.\n 4

Training2-PC - FIPy revision 3118939 (18113015} - Python 3.0

Loial 3 3 LY

Experiments that resulted in a CPU expection are colored magenta.

FIPY 3/3

C (@ localhost:8080/dashbc

FISCUrQC =eBrowser ¥Run @ Dashboard 'O History & Documentation
Dashboard Q Analyze »_Console J Change parameters Wl Stop MM Restart Wl Pause Z.dsec & 5sec & Off Status
id glitch_delay glitch voltage glitch length Data Color Active bluehatil?e15 encrypted boot_demo_1.py
script
. 12773 113607 2.0407 984 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4 .
[BL1]: Authenticating BL2 unsuccesful. Stopping.\n Status (iRm0
. 12772 6099 22671 738 [BL1]: successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: pecrypting BL2 successful.\n 4 Runtime 01:08:10
[BL1]: authenticating BLZ unsuccesful. Stopping.'n Total 12818 (3.1/3)
B 12771 146840 22198 a870 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4 attempts
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n Results . 10064 (85.54 %)
. 12770 233984 1.8955 693 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4 @ 1089 (850 %)
[ch. ¥
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n :
409 (3.19 %)
. 12769 219344 2.0889 Q17 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BL2 successful.\n 4 :
[BL1]: suthenticating BLZ unsuccesful. Stopping.'n @ 246 (192 %)
. 12768 222146 1.5007 1283 [BL1]: Successfully started.\n[BL1]: Loading BL2Z successful.\n[BL1]: Decrypting BL2 successful.\n 4 @ 110 (0.86 %)
[BL1]: Authenticating BLZ unsuccesful. Stopping.'n
. 12767 234484 2.0251 1033 [BL1]: Successfully started.\n\m\nThank you for inviting us!illilyn 3
@ 12766 133683 1.7813 599 [BL1]: successfully started.\n[BL1]: Loading BL2 successful.\n[BL1]: Decrypting BLZ successful.\n & Settings
[BL1]: authenticating BLZ unsuccesful. Stopping.'n
@ 12765 181235 1.9552 1220 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12764 189253 23838 576 [BL1]: Successfully started.\n[BL1]: Loading BLZ? successful.\n[BL1]: Decrypting BLZ successful.yn 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12763 50531 1.9885 978 [BL1]: Successfully started.\n[BL1]: Loading BLZ successful.\n[BL1]: Decrypting BLZ successful.\n 4
[BL1]: Authenticating BLZ unsuccesful. Stopping.\n
. 12762 18290 2.092 756 [BL1]: Successfully started.\n[BL1]: Loading BL2Z successful.\n[BL1]: Decrypting BL2 successful.\n 4
[BL1]: Authenticating BL2 unsuccesful. Stopping.\n Training2-PC - FIPy revision 3118939 (18113015} - Python 3.0

Experiments that resulted in a successful bypass of secure boot are colored red.

WHAT NOW?

WHITE PAPER

"Notes on designing secure boot."

Coming soon!

HARDENING SECURE BOOT

Keep it simple
Minimize attacker choices
Authenticate everything
No weak crypto
Make software exploitation hard
Drop privileges
Make fault injection hard

Support anti-rollback

WHAT ELSE

SECURE SYSTEM/SW DEVELOPMENT LIFE CYCLE
(SECURE SDLC)

e Continuous software review & testing

e Hardware security review & testing

KEY TAKEAWAYS

1. Secure boot is often not optimally hardened
2. Attack surface of secure boot is larger than expected

3. New perspectives on attacking secure boot

THANK YOU. QUESTIONS?

riscurc

PULSZ=Z ©

Niek Timmers Albert Spruyt Cristofaro Mune
niek@riscure.com albert.spruyt@gmail.com c.mune@pulse-sec.com

@tieknimmers @pulsoid

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:albert.spruyt@gmail.com
mailto:c.mune@pulse-sec.com
https://twitter.com/pulsoid

