

Niek Timmers

Albert Spruyt

Cristofaro Mune

HARDENING SECURE BOOT ON
EMBEDDED DEVICES FOR
HOSTILE ENVIRONMENTS

niek@riscure.com

@tieknimmers

albert.spruyt@gmail.com c.mune@pulse-sec.com

@pulsoid

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:albert.spruyt@gmail.com
mailto:c.mune@pulse-sec.com
https://twitter.com/pulsoid

WHY THIS TALK?

SOME HISTORY...

2003

2008

2010

2011

2013

2016

2016

2017

2018

Hacking Nintendo
2016 @ 33c3

Secure
Initialization of

TEEs; when
secure boot falls

short @
Euskalhack

Bypassing Secure
Boot using Fault
Injection @ Black

Hat Europe
Nintendo Switch

20 ways past
secure boot @

HITB KUL

Xbox 360 reset
glitch

Console Hacking
2010 @ 27c3

Hacking the
iPhone @ 25c3

Hacking the Xbox

SECURE BOOT IS STILL OFTEN VULNERABLE...

OUR GOAL
Create a Secure Boot guidance for

designers, implementers and integrators.

WHITE PAPER

We are working on it!

"Notes on Designing Secure Boot."

THIS PRESENTATION

Offensive focus

Known and new attacks

New perspectives

AGENDA
Introduction

Secure Boot

Attacks and Mitigations

Demo

Takeaways

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...

Device is turned off

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

ROM code loads BL1 into internal SRAM

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

BL1 initializes DDR and loads BL2 into DDR

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

...

And then, more is loaded and executed...

TWO MAJOR THREATS...

ATTACKERS
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

Attacker 1: hardware hacker modifies flash

ATTACKERS
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

Attacker 2: (remote) so�ware hacker modifies flash

THEREFORE WE NEED SECURE BOOT

SECURE BOOT

Authentication of loaded images

Root of trust embedded in hardware

i.e. immutable code and data (e.g. ROM, OTP)

SECURE BOOT
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

ROM has copied BL1 to SRAM

SECURE BOOT
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

 Signature

 Signature

ROM calculates the BL1 hash

SECURE BOOT
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

 Signature

 Signature

ROM compares the hash against the reference from the signature

SECURE BOOT
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL1 is executed

THE REAL WORLD IS A LITTLE MORE COMPLEX...

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS AppsHardware

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Privileges change/drop during boot.

Hardware

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Cannot be updated. Can be updated.

Privileges change/drop during boot.

Hardware

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Cannot be updated. Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Privileges change/drop during boot.

Hardware

Lots of different interests!

MITIGATING THREATS
Modifying code/data in flash

Insecure updates

Creating a persistent foothold

Access to keys, code and crypto engines

Escalating privileges (e.g. REE to TEE)

ATTACK SURFACE

Broken
design

Broken
implementation

OR

ATTACK SURFACE

Broken
design

Broken
implementation

Broken
software

Broken
hardware

OR OR

WHAT GOES WRONG IN THE FIELD...

Amlogic S905 SoC BootROM vulnerability

Broken
design

Broken
implementation

Broken
software

Broken
hardware

OR OR

Weak
Cryptographic

options

Secure Boot is bypassed, and BootROM is dumped, by downgrading from RSA to SHA
Credit: fredericb

https://fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

MITIGATIONS:

Do not support weak cryptographic options

Limit the amount of options

Nintendo Switch BootROM vulnerability

Broken
design

Broken
implementation

Broken
software

Broken
hardware

OR OR

Buffer overflow

Buffer overflow in the USB recovery mode
Credit: and fail0verflow Cease & DeSwitch

https://github.com/Cease-and-DeSwitch/fusee-launcher
https://github.com/Cease-and-DeSwitch/fusee-launcher

MITIGATIONS:

Write secure so�ware ;)

Make so�ware exploitation hard

i.e. stack cookies, ASLR, CFI, etc.

Use memory protections to enforce W^X

e.g. MPU, MMU, IOMMU, etc.

SWITCH FAULT INJECTION

Broken
implementation

Broken
hardware

Broken
Implementation

OR OR

Fault Injection

Broken
software

Broken
design

SKIP HASH VERIFICATION USING VOLTAGE FAULT INJECTION

FAULT INJECTION (FI)
Make glitches with e.g.: EM, light, clock, power, heat

Use a glitch to introduce a fault in a device

Model faults:

Instruction skipping

Instruction/data corruption

FI ALTERS THE INTENDED BEHAVIOR OF HW AND SW

FAULT INJECTION MITIGATIONS
So�ware

Redundancy (e.g. double checks)

Random delays

Hardware

Redundancy

Glitch detectors

Clock randomization

Viva La Vita Vida fault injection attack

Broken
implementation

Broken
hardware

Broken
Implementation

OR OR

Fault Injection

Broken
software

Broken
design

Introducing a classic buffer overflow using Voltage Fault Injection
Credit: Yifan Lu and Davee @ 35c3

https://media.ccc.de/v/35c3-9364-viva_la_vita_vida

MITIGATIONS:

It's Fault injection so use FI mitigations

It's So�ware exploit so use exploit mitigations

DESIGNING SECURE BOOT AINT EASY!

ESPECIALLY CONSIDERING THE CONSTRAINTS...

Initializing hardware

Interfacing with peripherals

Performance

Code size

Keeping engineering cost low

Recoverability

Customer needs

IT'S IMPORTANT TO GET IT RIGHT

WRONG SECURITY IS EXPENSIVE
Tape out

Crisis management

PR damage

Time to market

Recall of devices/unsold inventory

Additional engineering time

HAS THE WORLD SEEN IT ALL?

FAULT INJECTION ON OTP TRANSFER

Broken
implementation

Broken
hardware

Broken
Implementation

OR OR

Fault Injection

Broken
software

Broken
design

Attacking Secure Boot before any code is executed!

LET'S LOOK AT THIS ONE IN DETAIL

OTP AND SECURE BOOT

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Cannot be updated. Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Privileges change/drop during boot.

Hardware

ROM code uses values from OTP for enabling/disabling security features.

EXAMPLE

Value stored in shadow registers. Populated by OTP Transfer.

memcpy(I_SRAM, I_FLASH, I_SIZE); // 1. Copy image
memcpy(S_SRAM, S_FLASH, S_SIZE); // 2. Copy signature

if (*(OTP_SHADOW) >> 17 & 0x1) { // 3. Check if enabled
 if(SHA256(I_SRAM, I_SIZE, I_HASH)) { // 4. Calculate hash
 while(1);
 }

 if(verify(PUBKEY, S_SRAM, I_HASH)) { // 5. Verify image
 while(1);
 }
}

jump(); // 6. Jump to next image

POPULATING SHADOW REGISTERS

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Cannot be updated. Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Privileges change/drop during boot.

Hardware

OTP Transfer performed in hardware. BEFORE any ROM code is executed.

OTP TRANSFER 1/5

System-on-Chip

A typical System-on-Chip (SoC)

OTP TRANSFER 2/5

System-on-Chip

OTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3

Contains a special OTP hardware block

OTP TRANSFER 3/5

System-on-Chip

OTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3 OTP
controller

CMD/RSP

Which is wrapped by a hardware controller

OTP TRANSFER 4/5

System-on-Chip

Shadow registersOTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3 OTP
controller

Register 1

Register 3

Register 2

Register 4

Register ...

CMD/RSP

This controller copies the OTP values to dedicated registers a�er SoC reset

OTP TRANSFER 5/5

System-on-Chip

Shadow registersOTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3 OTP
controller

Register 1

Register 3

Register 2

Register 4

Register ...

CMD/RSP

CPU

BUS

CPU is released from reset. Shadow registers can be read using system bus.

WHERE CAN WE ATTACK?

ANYWHERE!
System-on-Chip

Shadow registersOTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3 OTP
controller

Register 1

Register 3

Register 2

Register 4

Register ...

CMD/RSP

CPU

BUS

Attack the bus between the OTP PHY and the OTP controller.

ANYWHERE!
System-on-Chip

Shadow registersOTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3 OTP
controller

Register 1

Register 3

Register 2

Register 4

Register ...

CMD/RSP

CPU

BUS

Attack the OTP controller directly.

ANYWHERE!
System-on-Chip

Shadow registersOTP phy

OTP BANK 1

OTP BANK 2

OTP BANK 4

OTP BANK ...

OTP BANK 3 OTP
controller

Register 1

Register 3

Register 2

Register 4

Register ...

CMD/RSP

CPU

BUS

Attack the bus between the OTP controller and the shadow registers.

WE CAN AFFECT

SIGNATURE VERIFICATION
AND/OR

STAGE ENCRYPTION
BYPASSING

(ENCRYPTED) SECURE BOOT

THAT WAS FUN; LET'S DO ANOTHER ONE!

FAULT INJECTION ON ENCRYPTED SECURE BOOT

Broken
implementation

Broken
hardware

Broken
Implementation

OR OR

Fault Injection

Broken
software

Broken
design

...WITHOUT AN ENCRYPTION KEY!

SIGNATURE VERIFICATION
memcpy(I_SRAM, I_FLASH, I_SIZE); // 1. Copy image
memcpy(S_SRAM, S_FLASH, S_SIZE); // 2. Copy signature

if (*(OTP_SHADOW) >> 17 & 0x1) { // 3. Check if enabled
 if(SHA256(I_SRAM, I_SIZE, I_HASH)) { // 4. Calculate hash
 while(1);
 }

 if(verify(PUBKEY, S_SRAM, I_HASH)) { // 5. Verify image
 while(1);
 }
}

jump(); // 6. Jump to next image

FAULT INJECTION FAULT MODEL

Faults can cause "instruction not to be executed"

Inaccurate but sufficient

Widely adopted (by academia and industry)

Useful for affecting the code flow

"Instruction skipping"

LET'S USE IT FOR BYPASSING SECURE BOOT!

A TEXTBOOK ATTACK 1/3

System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...

Device is turned off

A TEXTBOOK ATTACK 2/3

System-on-a-Chip

SRAM ROM

CPU

Flash DDR

Code

BL2

...

Replace BL1 with a malicious image

A TEXTBOOK ATTACK 3/3

Skip verify function call and boot an malicious image

memcpy(I_SRAM, I_FLASH, I_SIZE); // 1. Copy image
memcpy(S_SRAM, S_FLASH, S_SIZE); // 2. Copy signature

if (*(OTP_SHADOW) >> 17 & 0x1) { // 3. Check if enabled
 if(SHA256(I_SRAM, I_SIZE, I_HASH)) { // 4. Calculate hash
 while(1);
 }

 if(verify(PUBKEY, S_SRAM, I_HASH)) { // 5. Glitch here!
 while(1);
 }
}

jump(); // 6. Jump to next image

GLITCH AT THE RIGHT MOMENT AND PROFIT!

WHAT IF BL1 IS ENCRYPTED?

ENCRYPTED SECURE BOOT

The image is decrypted a�er it is copied and before it is verified!

memcpy(I_SRAM, I_FLASH, I_SIZE); // 1. Copy image
decrypt(SYM_KEY, I_SRAM, I_SIZE); // NEW: Decrypt image
memcpy(S_SRAM, S_FLASH, S_SIZE); // 2. Copy signature

if (*(OTP_SHADOW) >> 17 & 0x1) { // 3. Check if enabled
 if(SHA256(I_SRAM, I_SIZE, I_HASH)) { // 4. Calculate hash
 while(1);
 }

 if(verify(PUBKEY, S_SRAM, I_HASH)) { // 5. Glitch here!
 while(1);
 }
}

jump(); // 6. Jump to next image

THE MISSING KEY...
Encryption key needed for creating a malicious image

THAT'S WHY...
FI attacks are o�en considered infeasible when

encrypted Secure Boot is used.

UNTIL NOW!

FAULT INJECTION FAULT MODEL

Faults can modify instructions

Destination register could be changed

Fairly new application

Great for modifying code and getting control

"Instruction corruption"

BYPASSING ENCRYPTED SECURE BOOT 1/4

System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...

Device is turned off.

BYPASSING ENCRYPTED SECURE BOOT 2/4

System-on-a-Chip

SRAM ROM

CPU

Flash DDR

Code

BL2

...

Pointers

Replace encrypted BL1 with plain text code and pointers to SRAM.

BYPASSING ENCRYPTED SECURE BOOT 3/4

System-on-a-Chip

SRAM ROM

CPU

Flash DDR

Code

BL2

...

Pointers

Code

Pointers

Glitch is injected a�er code copy and while pointers are being copied.

BYPASSING ENCRYPTED SECURE BOOT 4/4

Glitch during pointers copy to assign a pointer to the program counter (PC).

memcpy(I_SRAM, I_FLASH, I_SIZE); // Glitch here!
decrypt(SYM_KEY, I_SRAM, I_SIZE); // Before decryption
memcpy(S_SRAM, S_FLASH, S_SIZE); // and

if(SHA256(I_SRAM, I_SIZE, I_HASH)) { // before
 while(1);
}

if(verify(PUB_KEY, S_SRAM, I_HASH)) { // verification!
 while(1);
}

jump(); // CPU will never reach here

RESULTING CODE EXECUTION

Control flow is hijacked. The decryption and verification of the image is bypassed!

memcpy(I_SRAM, I_FLASH, I_SIZE); // Glitch here!
.
.
.
.
.
.
.
.
.
.
.
((void *)())(pointer)();

CONCRETELY SAID...

WE TURN

ENCRYPTED SECURE BOOT
INTO

PLAINTEXT UNPROTECTED BOOT
USING

A SINGLE GLITCH AND NO KEY!

PWN3D!
Timing no so relevant

Full PC control

Bypass any SW FI countermeasure

FAULT INJECTION DEMO
ON ENCRYPTED SECURE BOOT!

Important:
We are attacking a demo implementation!

FAULT INJECTION SETUP

Riscure Spider (Glitcher)

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB Serial

STM32F4 Development Board

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB Serial

STM32F4 Development Board

Voltage

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB Serial

STM32F4 Development Board

Voltage

Reset

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

REAL WORLD FI SETUP

Even for simple setups there are cables everywhere...

VALID IMAGE

Hardware BL1 BL2

BL1 loads, decrypts and
authenticates BL2 successfully

MALICIOUS IMAGE

Hardware BL1 BL2

BL1 loads, decrypts but
fails to authenticate BL2

FLASH IMAGE MODIFICATION

VALID IMAGE

Hardware BL1 BL2

BL1 loads, decrypts and
authenticates BL2 successfully

MALICIOUS IMAGE

Hardware BL1 BL2

BL1 loads, decrypts but
fails to authenticate BL2

FLASH IMAGE MODIFICATION

TARGET BEHAVIOR
Valid image

Malicious image

Let's bypass it using fault injection!

[BL1]: Successfully started.
[BL1]: Loading BL2 successful.
[BL1]: Decrypting BL2 successful.
[BL1]: Authenticating BL2 successful.
[BL1]: Jumping to BL2...
[BL2]: Successfully started.

[BL1]: Successfully started.
[BL1]: Loading BL2 successful.
[BL1]: Decrypting BL2 successful.
[BL1]: Authenticating BL2 unsuccessful. Stopping!

LET'S SWITCH TO THE OTHER LAPTOP

OSCILLOSCOPE 1/2

We reset the chip for each experiment.

OSCILLOSCOPE 2/2

We inject the glitch during the copy of BL2 by BL1.

FIPY 1/3

Experiments that had no affect on the target are colored green.

FIPY 2/3

Experiments that resulted in a CPU expection are colored magenta.

FIPY 3/3

Experiments that resulted in a successful bypass of secure boot are colored red.

WHAT NOW?

WHITE PAPER

Coming soon!

"Notes on designing secure boot."

HARDENING SECURE BOOT
Keep it simple

Minimize attacker choices

Authenticate everything

No weak crypto

Make so�ware exploitation hard

Drop privileges

Make fault injection hard

Support anti-rollback

WHAT ELSE

SECURE SYSTEM/SW DEVELOPMENT LIFE CYCLE
(SECURE SDLC)

Continuous so�ware review & testing

Hardware security review & testing

KEY TAKEAWAYS

1. Secure boot is o�en not optimally hardened

2. Attack surface of secure boot is larger than expected

3. New perspectives on attacking secure boot

Niek Timmers

Albert Spruyt

Cristofaro Mune

THANK YOU. QUESTIONS?

niek@riscure.com

@tieknimmers

albert.spruyt@gmail.com c.mune@pulse-sec.com

@pulsoid

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:albert.spruyt@gmail.com
mailto:c.mune@pulse-sec.com
https://twitter.com/pulsoid

