

Niek Timmers

Albert Spruyt

PEW PEW PEW:
DESIGNING SECURE BOOT SECURELY

niek@riscure.com

@tieknimmers

albert.spruyt@gmail.com

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:albert.spruyt@gmail.com

WHY THIS TALK?

SOME HISTORY...

2003

2008

2010

2011

2013

2016

2016

2017

2018

Hacking Nintendo
2016 @ 33c3

Secure
Initialization of

TEEs; when
secure boot falls

short @
Euskalhack

Bypassing Secure
Boot using Fault
Injection @ Black

Hat Europe
Nintendo Switch

20 ways past
secure boot @

HITB KUL

Xbox 360 reset
glitch

Console Hacking
2010 @ 27c3

Hacking the
iPhone @ 25c3

Hacking the Xbox

SECURE BOOT IS STILL OFTEN VULNERABLE...

OUR GOAL
Create a Secure Boot guidance for

designers and implementers.

THIS PRESENTATION
Defensive focus

Offensive for context

AGENDA
Secure Boot

Fault Injection demo

Designing Secure Boot securely

Takeaways

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...

Device is turned off

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

ROM code loads BL1 into internal SRAM

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

BL1 initializes DDR and loads BL2 into DDR

GENERIC DEVICE
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

...

A�erwards more is loaded and executed...

TWO MAJOR THREATS...

ATTACKERS
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

Attacker 1: hardware hacker modifies flash

ATTACKERS
System-on-a-Chip

SRAM ROM

CPU

Flash DDR

BL1

BL2

...
BL1

BL2

Attacker 2: (remote) so�ware hacker modifies flash

THEREFORE WE NEED SECURE BOOT

SECURE BOOT
Root of trust embedded in hardware

i.e. immutable code and data (e.g. ROM, OTP)

Authentication of all code/data

(Optional): Decryption of all images

SECURE BOOT
System-on-a-Chip

SRAM ROM OTP

CPU

Flash DDR

BL1

...

Device is turned off

SECURE BOOT
System-on-a-Chip

SRAM ROM OTP

CPU

Flash DDR

BL1

Signature

...

Next to BL1 a signature is stored

SECURE BOOT
System-on-a-Chip

SRAM ROM OTP

CPU

Flash DDR

BL1

Signature

BL1

Signature

...

ROM verifies integrity of BL1

MITIGATING THREATS
Modifying code/data in flash

Creating a persistent foothold

Escalating privileges (e.g. REE to TEE)

Access to keys, code and crypto engines

Bypassing secure update mechanisms

THE REAL WORLD IS A LITTLE MORE COMPLEX...

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS AppsHardware

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Privileges change/drop during boot.

Hardware

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Cannot be updated. Can be updated.

Privileges change/drop during boot.

Hardware

SECURE BOOT FLOW

ROM Bootloader TEE
bootloader TEE OS REE

bootloader REE OS Apps

Cannot be updated. Can be updated.

Manufacturer A Manufacturer B Manufacturer C Manufacturer N

Privileges change/drop during boot.

Hardware

Securing the entire chain is complex...

CONSTRAINTS...
Initializing, and interfacing with, hardware

Performance and code size

Customer needs

Recoverability

Keeping engineering cost low

IT'S IMPORTANT TO GET IT RIGHT

BAD SECURITY IS EXPENSIVE!
Tape out

Crisis management

PR damage

Recall of devices/unsold inventory

Time to market

Additional engineering time

SO... WHERE DO YOU START?

[SBG-01]: Keep it simple

[SBG-02]: Hardware root of trust

[SBG-03]: Authenticate everything

[SBG-04]: Decrypt everything

[SBG-05]: No weak crypto

[SBG-06]: No "wrong" crypto

[SBG-07]: Limit options

[SBG-08]: Lock hardware down

[SBG-09]: Drop privileges asap

[SBG-10]: Make so�ware exploitation hard

[SBG-11]: Make hardware attacks hard

[SBG-12]: Stack your defenses

[SBG-13]: Continuous review and testing

[SBG-14]: Anti-rollback

LET'S DESIGN SECURE BOOT SECURELY!

BUT... BEFORE WE DO...

LET'S HAVE SOME FUN FIRST!

FAULT INJECTION
"Introducing faults into a target in order to change its intended behavior."

TIME

FAULT INJECTION
"Introducing faults into a target in order to change its intended behavior."

TIME

clock supplied to target

FAULT INJECTION
"Introducing faults into a target in order to change its intended behavior."

voltage supplied to target

TIME

clock supplied to target

FAULT INJECTION
"Introducing faults into a target in order to change its intended behavior."

5.0 V upper threshold

1.5 V lower threshold

voltage supplied to target

TIME

clock supplied to target

FAULT INJECTION
"Introducing faults into a target in order to change its intended behavior."

5.0 V upper threshold

1.5 V lower threshold

voltage supplied to target

TIME

clock supplied to target GLITCH:

FAULT INJECTION SETUP

Riscure Spider (Glitcher)

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB Serial

STM32F4 Development Board

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB Serial

STM32F4 Development Board

Voltage

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

FAULT INJECTION SETUP

Laptop

Riscure Spider (Glitcher)

USB Serial

STM32F4 Development Board

Voltage

Reset

You can use NewAE's too!ChipWhisperer

https://newae.com/tools/chipwhisperer/

REAL WORLD SETUP

Even for simple setups there are cables everywhere...

Original instruction: Glitched instruction:

FAULT INJECTION FAULT MODEL

Glitches can modify instructions

Great for modifying code and getting control

Breaks any so�ware security model

Instruction corruption.

add r0, r1, r3 1110 1011 0000 0001
 0000 0000 0000 0011

add r0, r1, r2 1110 1011 0000 0001
 0000 0000 0000 0010

LET'S USE IT TO BYPASS ENCRYPTED SECURE BOOT!

ENCRYPTED SECURE BOOT DESIGN

Microcontroller

SRAM FLASH OTP

CPU

Flash

BL1

BL2

...

BL1 is executed from internal flash

ENCRYPTED SECURE BOOT DESIGN

Microcontroller

SRAM FLASH OTP

CPU

Flash

BL1

BL2

...

BL2

BL1 loads, decrypts and verifies BL2

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY);
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE);

sha(IMG_RAM, IMG_SIZE, IMG_HASH);
rsa(PUB_KEY, SIG_RAM, SIG_HASH);

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}

((void *)())(IMG_RAM)();

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY); // 2. Decrypt image
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE);

sha(IMG_RAM, IMG_SIZE, IMG_HASH);
rsa(PUB_KEY, SIG_RAM, SIG_HASH);

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}

((void *)())(IMG_RAM)();

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY); // 2. Decrypt image
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE); // 3. Copy signature

sha(IMG_RAM, IMG_SIZE, IMG_HASH);
rsa(PUB_KEY, SIG_RAM, SIG_HASH);

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}

((void *)())(IMG_RAM)();

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY); // 2. Decrypt image
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE); // 3. Copy signature

sha(IMG_RAM, IMG_SIZE, IMG_HASH); // 4. Calculate hash from image
rsa(PUB_KEY, SIG_RAM, SIG_HASH);

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}

((void *)())(IMG_RAM)();

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY); // 2. Decrypt image
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE); // 3. Copy signature

sha(IMG_RAM, IMG_SIZE, IMG_HASH); // 4. Calculate hash from image
rsa(PUB_KEY, SIG_RAM, SIG_HASH); // 5. Obtain hash from signature

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}

((void *)())(IMG_RAM)();

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY); // 2. Decrypt image
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE); // 3. Copy signature

sha(IMG_RAM, IMG_SIZE, IMG_HASH); // 4. Calculate hash from image
rsa(PUB_KEY, SIG_RAM, SIG_HASH); // 5. Obtain hash from signature

if(compare(IMG_HASH, SIG_HASH) != 0) { // 6. Compare hashes
 while(1);
}

((void *)())(IMG_RAM)();

ENCRYPTED SECURE BOOT IMPLEMENTATION
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // 1. Copy image
decrypt(IMG_RAM, IMG_SIZE, KEY); // 2. Decrypt image
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE); // 3. Copy signature

sha(IMG_RAM, IMG_SIZE, IMG_HASH); // 4. Calculate hash from image
rsa(PUB_KEY, SIG_RAM, SIG_HASH); // 5. Obtain hash from signature

if(compare(IMG_HASH, SIG_HASH) != 0) { // 6. Compare hashes
 while(1);
}

((void *)())(IMG_RAM)(); // 7. Jump to next image

HOW DO WE ATTACK?

BYPASSING ENCRYPTED SECURE BOOT

Microcontroller

SRAM FLASH OTP

CPU

Flash

BL1

BL2

...

Code
+

Pointers

BL2 is replaced with code and pointers to SRAM

Valid BL2 image

Valid BL2 image UART output

Malicious BL2 image

Malicious BL2 image UART output

FLASH IMAGE MODIFICATION AND BEHAVIOR

[BL1]: Successfully started.
[BL1]: Loading BL2 successful.
[BL1]: Decrypting BL2 successful.
[BL1]: Authenticating BL2
 successful.
[BL1]: Jumping to BL2...
[BL2]: Successfully started.

[BL1]: Successfully started.
[BL1]: Loading BL2 successful.
[BL1]: Decrypting BL2 successful.
[BL1]: Authenticating BL2
 unsuccessful. Stopping!

WHEN DO WE INJECT THE GLITCH?

BYPASSING ENCRYPTED SECURE BOOT

Microcontroller

SRAM FLASH OTP

CPU

Flash

BL1

BL2

...

Code
+

Pointers

Code

Pointers

Glitch is injected a�er code is copied and while pointers are being copied.

BYPASSING ENCRYPTED SECURE BOOT

Control flow is hijacked. The decryption and verification of the image is bypassed!

...
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE); // GLITCH HERE
.
.
.
.
.
.
.
.
.
.
((void *)())(pointer)();
...

LET'S DO THIS!
On another laptop...

CONCRETELY SAID...

WE TURN

ENCRYPTED SECURE BOOT
INTO

PLAIN TEXT UNPROTECTED BOOT
USING

A SINGLE GLITCH AND NO KEY!

WHY DOES THIS WORK?

CONTROLLING PC

Original:

Glitched:

Demonstrated attack is 32-bit ARM specific

Variants of this attack applicable to all architectures

Glitch controlled value into PC directly (see:)

LDM/STM instructions used for copying memory

paper

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf

IS THIS THE ONLY FI ATTACK ON SECURE BOOT?

ENUMERATION OF FI ATTACKS ON SECURE BOOT

Please see our offensive paper!

IT'S TIME TO DESIGN SECURE BOOT SECURELY...

LET'S GET THE FUNDAMENTALS RIGHT!

SECURE BOOT FUNDAMENTALS
Hardware root of trust

Authenticate everything

Encrypt everything

Use strong crypto

Use crypto correctly

We assume you all agree. But... it goes o�en wrong!

HARDWARE ROOT OF TRUST

How many devices do you know without ROM/OTP?

Real world Secure Boot bypass:

Intel's using SPI flash.Root of Trust

https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/

BL1

Header

Signature

...

How does the ROM know how large the image is?

AUTHENTICATE EVERYTHING

BL1

Header

Signature

...

Length and destination are used before verification

AUTHENTICATE EVERYTHING

struct header {
 uint32_t BL1_length;
 uint32_t BL1_destination;
 uint32_t BL1_entry_point;
} _header;

BL1

Header

Signature

...

Header needs its own signature

AUTHENTICATE EVERYTHING

struct header {
 uint32_t BL1_length;
 uint32_t BL1_destination;
 uint32_t BL1_entry_point;
 uint8_t BL1_header_sig[0x100];
} _header;

AUTHENTICATE EVERYTHING

Authenticate all security relevant code and data

Try to prevent mistakes:

Design should enforce authenticating everything

Real world Secure Boot bypass:
 by CTSLabsAMD Secure Boot

https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/The%20AMDFlaws%20Story%20Technical%20Deep%20Dive.pdf

ENCRYPT EVERYTHING

There will be so�ware vulnerabilities

Make analyzing the firmware hard

Attacks may be more difficult to perform

Are u proposing security by obscurity?

FUNDAMENTALS MAKE SENSE... WHAT ELSE?

KEEP IT SIMPLE

Nobody wants complex parsing during boot

Do not support the world (especially in ROM)

Make auditing the code easier

Real world Secure Boot bypass:
 in file system parserU-Boot vulnerability

https://github.com/inversepath/usbarmory/blob/master/software/secure_boot/Security_Advisory-Ref_IPVR2018-0001.txt

DROP PRIVILEGES ASAP

Not just operating modes:

Monitor, Hypervisor, Kernel, User

But also access to:

Keys, ROM, crypto engines

LET'S ASSUME THE DESIGN IS GREAT!

BUT CONTAINS SOFTWARE VULNERABILITIES...

EXPLOITATION MITIGATIONS AT RUNTIME

Binaries are hardened by the compiler

Operating system makes exploitation difficult too

Stack cookies, W^X, ASLR, CFI, etc.

DO YOU THINK THAT'S DONE AT EARLY BOOT?

MOST EARLY BOOT STAGES DO:

not have stack cookies

not have ASLR

not have CFI

not have the MPU/MMU enabled/configured

not have IOMMU/SMMU enabled/configured

COME ON! IT'S 2019...

YOU MAY GET THESE ALMOST FOR FREE:

Stack cookies

Control flow integrity (CFI)

MEMORY PROTECTION MAY BE MORE CHALLENGING:

MPU/MMU

W^X

IOMMU/SMMU

Prevent DMA from overwriting code/data

BUT WAIT...

WHAT ABOUT HARDWARE HACKERS?

EVERYTHING APPLIES!

PLUS SOME MORE...

PCB LEVEL ATTACKS

An attacker can tamper with signals on the PCB

Copy data from external memory once

Operate only on the internal copy

Prevent TOCTOU / Double Fetch vulnerabilities

Flash emulator

LOCK DOWN YOUR HARDWARE

Disable peripherals that are not used

e.g. external memories, USB, etc.
No access to external flash; no TOCTOUs

Disable or protect JTAG/DEBUG ports

Disable debug messages on serial ports

WHAT ABOUT ATTACKERS WITH MORE THAN A:

ONLY PEW PEW PEW LIKE IN THE DEMO?

SIDE CHANNEL ATTACKS

WHAT ARE SIDE CHANNEL ATTACKS? 1/2
Power consumption of a valid image

Power consumption of an invalid image

IS THIS THE ONLY SIDE CHANNEL?

WHAT ARE SIDE CHANNEL ATTACKS? 2/2

Timing attacks to recover HMAC/CMAC

Real world example:

DPA attack to recover encryption keys

Do not expect secrets (i.e. keys) will be secret forever!

Xbox 360

http://beta.ivc.no/wiki/index.php/Xbox_360_Timing_Attack

ARE FI AND SCA ATTACKS EXPENSIVE?

The HorrorScope ($5)

By Albert and Alyssa ()

FI and SCA

Alternatives:

Any board with fast ADC/GPIO (free?)

ChipWhisperer Nano (~$50)

Please see our presentation at !

FI AND SCA ARE NOT (ALWAYS) EXPENSIVE!

@noopwafel

Troopers 2019

https://twitter.com/noopwafel
https://www.troopers.de/troopers19/agenda/vdkjrf/

SCA AND ESPECIALLY FI ARE REAL THREATS!

LET'S MAKE FAULT INJECTION HARDER!

GOALS WHEN MITIGATING FI

Lower the probability of success

Low enough probability equals infeasible

infeasbible equals takes too much time

HARDENING HARDWARE (ICS) AGAINST FI

Redundancy

Checksums

Clock jitter

Glitch/Fault detectors

Lots of academic research e.g.:

The Sorcerer’s Apprentice Guide to Fault Attacks

https://eprint.iacr.org/2004/100.pdf

CHALLENGES FOR HARDWARE MITIGATION

Hardware is fixed

Adding hardware is costly

Detectors need calibration

FI resistent hardware is not yet realistic for most devices!

WHAT CAN BE DONE

WITHOUT MODIFYING HARDWARE?

LET'S MAKE BYPASSING A CHECK HARD

RESET

CHIP

COPY

IMAGE

VERIFY

IMAGE
CHECK

USING STANDARD HARDWARE AND SOFTWARE!

MAKING BYPASSING A CHECK HARD

Identify all critical checks in your code

Perform these checks multiple times

RESET

CHIP

COPY

IMAGE

VERIFY

IMAGE
CHECK CHECK

Probability for success will likely drop

Multiple checks

MAKING BYPASSING A CHECK HARD

Randomize critical checks in time
RESET

CHIP

COPY

IMAGE

VERIFY

IMAGE
CHECK

Random
delay

COPY

IMAGE

VERIFY

IMAGE
CHECK

COPY
VERIFY

IMAGE
CHECK

RESET

CHIP

RESET

CHIP Random
delay

Random
delay

Probability for success will likely drop more

Random delays

WHAT GOES WRONG?

BAD RANDOM DELAY #1

RESET

CHIP

COPY

IMAGE

VERIFY

IMAGE
CHECK

Random
delay

COPY

IMAGE

VERIFY

IMAGE
CHECK

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP

RESET

IMAGE Random
delay

Random
delay

External SPI communication can be used for timing!

BAD RANDOM DELAY #2

RESET

CHIP

COPY

IMAGE

VERIFY

IMAGE
CHECK

COPY

IMAGE

VERIFY

IMAGE
CHECK

COPY

IMAGE

VERIFY

IMAGE
CHECK

Random
delay

RESET

CHIP

RESET

CHIP

Random
delay

Random
delay

Power consumption can be also used for timing!

GOOD RANDOM DELAY!

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

Little time a�er random delay to inject glitch

WHAT ABOUT COMBINING
MULTIPLE CHECKS AND RANDOM DELAYS?

COMBINED MITIGATION #1

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

CHECK

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

CHECK

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

CHECK

What could be improved?

Random delays + Multiple checks

BETTER COMBINATION!

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

CHECK
Random
delay

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

CHECK
Random
delay

COPY

IMAGE

VERIFY

IMAGE
CHECK

RESET

CHIP Random
delay

CHECK
Random
delay

Probability for success drops signifcantly!

Let's combine some more...

COMBINED MITIGATION #2

Let's use it to mitigate the attack from the demo!

W^X + Multiple checks

COMBINED MITIGATION #2: MULTIPLE CHECKS
memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE);
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE);
sha(IMG_RAM, IMG_SIZE, IMG_HASH);
rsa(PUB_KEY, SIG_RAM, SIG_HASH);

if(compare(IMG_HASH, SIG_HASH) != 0) { // Compare hashes
 while(1);
}
if(compare(IMG_HASH, SIG_HASH) != 0) { // Compare hashes again
 while(1);
}
((void *)())(IMG_RAM)();

COMBINED MITIGATION #2: MULTIPLE CHECKS + W^X
makeWritable(IMG_RAM,IMG_SIZE); // Make IMG_RAM read-write

memcpy(IMG_RAM, IMG_FLASH, IMG_SIZE);
memcpy(SIG_RAM, SIG_FLASH, SIG_SIZE);

sha(IMG_RAM, IMG_SIZE, IMG_HASH);
rsa(PUB_KEY, SIG_RAM, SIG_HASH);

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}

makeExecutable(IMG_RAM, IMG_SIZE); // Make IMG_RAM executable

if(compare(IMG_HASH, SIG_HASH) != 0) {
 while(1);
}
((void *)())(IMG_RAM)();

COMBINED MITIGATION #2

Control flow cannot be hijacked at the memcpy

The code needs to be made executable

Multiple glitches required to bypass secure boot

W^X + Multiple checks

THESE ARE JUST SOME EXAMPLES... BE CREATIVE!

KEY TAKEAWAYS

1. Secure boot design is hard (even for experts)

2. Smart secure boot design saves money

3. So�ware mitigations can be cheap

4. Stacking different mitigations can be effective

5. Testing is essential to verify the implementation

Niek Timmers

Albert Spruyt

Riscure is and visit our booth!

THANK YOU. QUESTIONS?
Do you think Secure Boot implementations can be improved

significantly without significant costs?

niek@riscure.com

@tieknimmers

albert.spruyt@gmail.com

hiring

mailto:niek@riscure.com
https://twitter.com/tieknimmers
mailto:albert.spruyt@gmail.com
https://www.riscure.com/careers

