OverTime: o

Remote Timing Attacks against loT devices

hardwear.io USA 2019

Cristofaro Mune
(c.mune@pulse-sec.com)
@pulsoid

* A strcmp() classic implementation

* Taken from open-source project uClibc-ng

 Full source code available

Confidential

31 int strcmp (char *pl, char *p2)

32 {

33 unsigned char *sl = (unsigned char *) pl;
34 unsigned char *s2 = (unsigned char *) p2;
35 unsigned reg char cl, c2;

36

{

39 cl = (unsigned char) *sl++,

40 c2 = (unsignhed char) *s2++;

41 (cl == "\0")

42 cl - c2;

43

44 T

45 (cl == c2);

46

47 cl - c2;

48 }

https://elixir.bootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

L31 int strcmp (char *pl, char *p2)

32 {

33 unsigned char *sl = (unsigned char *) pl;
34 unsigned char *s2 = (unsigned char *) p2;
35 unsigned reg char cl, c2;

36

38 {

39 cl = (unsigned char) *sl++,;

40 c2 = (unsignhed char) *s2++;

41 (cl === "\0")

42 cl - c2;

43

44 }

45 (cl == c2);

46

47 cl - c2;

48 }

https://elixir.bootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

Int strcmp (char *pl, char *p2)
{
unsigned char *sl
unsigned char *s2
unsigned reg char cl, c2;

(unsigned char *) pl;
(unsigned char *) p2;

Oy LN B LW M)

Co ~l

HE Right character

= O W

= s W W

https://elixir.bootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

* Timing differences may:
- Leak information on non-observable processes

- Be used as oracles for testing assumptions/models:
» E.g. black-box testing

o |If:
- present on an observable channel
- They can be measured:
» With sufficient precision and accuracy

Request
[Attacker J 4 [Victim }

Response

Measurement —

* Collect time measurements for the first character:
- Multiple request for each candidate

* Analyze results by candidate
- Choose an estimator
- Set thresholds

* Distinguish one candidate distribution from all the others

e Go to the next character 8

* Relevant application:
- Cryptographic key extraction
- SQL injection
- Remote password guessing
- Cache timing attacks (NetSpectre)

e State-of-the art precision:
- 100ns (LAN)
- 1us (remotely)

...focus on fast remote servers...

Confidential

* Fast PC:
- 4GHz clock
- 1 clock tick = 250 picoseconds (107-12)

* We focus on strcmp():
- Worst case scenario for a timing attack
- i.e. If attack can detect one byte difference remotely... it can work
on anything
* One single strcmp() loop (1 char):
- 13 instructions (x86)
- ~3ns
« Assuming 1 instruction/clock_cycle

1200

1000 f= — — —— e

800

600

Nanooseconds

400

200

State-of-the-art (Remote) State-of-the-art (Local) PC @4GHz

Device
strcemp(): 1 char
B Nanoseconds

11

e String comparison:

- “Impractical in the vast majority of cases” 2015 — Morgan &
Morgan

- Remote servers with fast CPUs

* But...lIoT systems clocks are much slower!

that differ in the first character vs. strings that differ only at the 10th character. This indicates

that timing attacks on regular string comparison have to be assumed feasible for any embedded
system. *

* 2014 — Mayer, Sandin — “Time Trial”

Nanoseconds

1400

1200

1000

800

600

400

200

_%__
+
+
2T S
o ——
Status (Local) RPi3 1.2GHz MKR1000 48MHz
Status (Remote) R7800 1.7GHz ESP32 240MHz UNO 16MHz
Device

M strcmp() loop

13

e Modern IoT devices:
- Slower clocks

Fast network interfaces:
* E.g. Ethernet 100 Mbit

* Single strcmp() loop within range of remote measurability

* Older devices may be even slower!
E.g. 2-16 MHz
May get network connected

14

Confidential

Critical Infrastructures

Smart Cities

Industrial 10T-

Slow clock
Connected

l

T4 |

Physical Security

Devices \

Smart homes

Confidential

* Target connectivity:
- May not be sufficiently fast for reasonable attacks

* Acquisition noise:
- Network:
* Route changes, Buffering, QoS, other Delays

- Target:
» Scheduling, Bandwidth saturation, Frequency scaling, Clock drifts

- Host (Attacker):
« Same as Target

* Analysis noise:
- Preprocessing induced artifacts, Wrong estimators, Bias,...

Confidential

NoiseHF NoiseVE

y D NoiseNF -~ B
Host .

. W < e |
NoiseHR NoiseNR NoiseVR

* Acquisition noise:
- Host (H), Network (N), Victim (V)
- Different between the Forward (F) and the Return (R) paths

* Some noise may be assumed constant
- under very short timeframes

Confidential

=
(@)

* Arduino UNO:
16MHz
100MBit Eth shield
Direct connection to Host

* UuClibc strcmp() implementation:
UDP server with password authentication

* Host measurements:
- We start simple:
* Round-trip time
* From userspace

Confidential

Count

Distribution

12
C 3 P
500 - — 4
15
400
300 A
200 A
o
100 A p—
c
Q
©
=
c
@)
®)
0 T T T == T === T T
1100000 1200000 1300000 1400000 1500000 1600000

Response time [ns]

Count

Distribution

— 2
— 4
1400 A —}
1200
1000 -
800 -
600
400 -
200 -
0 T T T n‘_‘ﬁh— S T T T
1000000 1200000 1400000 1600000 1800000 2000000

Response time [ns]

Confidential

Non-Gaussian

Unknown

Generic, distribution-independent estimators required.
- Few statistical estimators can be applied

A good solution:
- “Box test” (2009 — Crosby et al.)

Confidential

0.0000030

0.0000025)

0.0000020

0.0000015)

0. 0000010

0.0000005)

[Test Case 2
[Test Case 1

1.28

L.30
RTT Difference

23

Confidential

* Measurement of differential pairs may significantly reduce
“stable” noise

* Approach:
Take a reference measurement (ref)

Perform the real measurement (m1l)

Compute ml-ref=mO

Take mO as your measurement

* Improvements:
- Constant noise is canceled out
- mO Distribution is symmetrical an zero centered
- Under some assumptions it may be Gaussian.
- More advanced statistical analysis (and ML) available

24

Confidential

Distribution

500

400

1 300

200 A

100 +

—/

600 -=> 2
<§>3
-=> 4

-=5

T T
—600000 0 200000

Response time [ns]

T
400000

Confidential

* Quality: Constant noise is canceled out

* Processing: More advanced analysis possible
- Better estimators available

* ML approach via GMM possible!
- Gaussian Mixture Modeling, assumes Gaussian distributions

- See great post at:
* https://parzelsec.de/timing-attacks-with-machine-learning/

26

Confidential

https://parzelsec.de/timing-attacks-with-machine-learning/

* Mostly focused on:
Reducing network noise

Improving analysis techniques

* Past approaches:
- Using TCP timestamps as time source:
« May bypass network noise
Differential pairs:

* My research goal: Reducing Host-side Noise

28

Confidential

Hardware

Userspace Kernel

* Multiple different measurement points:
- Root privileges/Kernel access may be required

* Multiple time sources available:
- Precision and accuracy may significantly vary

e Golden rule:

- “The closer the measurement is to the hardware, the less noise i2°’9

introduced”

Confidential

Used in most researches

Measurement:
- Started as soon the packet is sent (from userspace)

- And stopped, as soon as the packet is received (by userspace)

Available time sources:
- Clocks (monotonic and non)

- CPU counters

Notes:
- Some clocks may not have nanosecond precision

« Still, CPU counters may reach sub-nano seconds precisions
- Accuracy may be low:
« Scheduling, Interrupts,...

30

Confidential

* Python 3.7 supports time.performance_counter_ns()
- Convenient access to high resolution performance counters

- Nanoseconds precision

* Notes:
- Additional delays may be introduced by the Python interpreter.

- Not an issue if delays are roughly constant (in a short timeframe)
» Cancel out by using measurement of differential pairs

31

Confidential

Count

Distribution

600 1 =2
— i
—J -=5
Avg Standard Deviation:
</§2916.68rD
_\

Response time [ns]

Confidential

* Can be performed by accessing time sources in kernel space

* An easy way: libpcap
- Packets are timestamped by the kernel
- That’'s how Wireshark receives timestamps! ©

Callbacks can be isntalled on packet reception and sending

Latest libpcap versions support nanosecond precision!

// Set timestamp type on device
ret = pcap_set_tstamp_type(handle, PCAP_TSTAMP_HOST)

/] Set timestamp precision on device
ret = pcap_set_tstamp_precision(handle, PCAP_TSTAMP_PRECISION_NANO)

33

Confidential

sudo ethtool -T enol

jTime stamping parameters for enol:

JICapabilities:

i hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
hardware-recetive (SOF_TIMESTAMPING RX_ HARDWARE)
software-receive (SOF TIMESTAMPING RX SOFTWARE)
software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
hardware-raw-clock (SOF_TIMESTAMPING RAW HARDWARE)

PTP Hardware Clock: 0

Hardware Transmit Timestamp Modes:
of f (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)
ptpvi-14-sync (HWTSTAMP_FILTER PTP V1 L4 SYNC)
ptpvi-l4-delay-req (HWTSTAMP_FILTER _PTP_V1 L4 DELAY_REQ)
ptpv2-14-sync (HWTSTAMP_FILTER_PTP_V2_ L4 _SYNC)
ptpv2-14-delay-req (HWTSTAMP_FILTER_PTP_V2_L4 DELAY_REQ)
ptpv2-12-sync (HWTSTAMP_FILTER_PTP_V2_L2_SYNC)
ptpv2-12-delay-req (HWTSTAMP_FILTER_PTP_V2 L2 _DELAY_REQ)
ptpv2-event (HWTSTAMP_FILTER_PTP_V2_EVENT)
ptpv2-sync (HWTSTAMP_FILTER_PTP_V2_SYNC)
ptpv2-delay-req (HWTSTAMP_FILTER_PTP_V2_DELAY_REQ)

Confidential

* Can be accessed in the same way from libpcap

* Timestamp provided directly by the network card!

With nanosecond precision!

1st time ever applied to timing attacks (AFAIK)

// Set timestamp type on device
ret = pcap_set_tstamp_type(handle, PCAP_TSTAMP_ADAPTER_UNSYNCED)

/] Set timestamp precision on device
ret = pcap_set_tstamp_precision(handle, PCAP_TSTAMP_PRECISION_NANO)

35

Confidential

800 -

600 -

Count

400 A

200

Distribution

Avg Standard Deviation:
1634907

~5x more precise!
(w.r.t userspace timestamps)

Response time [ns]

Demo

* Target: Arduino UNO
- Clock speed: 16 Mhz
- Media: Ethernet 100Mbit

* Numeric PIN: 8 digits

* Measurements:
- Differential pairs
- Hardware timestamping enabled

38

Confidential

Bruteforcing last char...
313378960
 Success!

T ATl Un=-May=-12 20:25:67 2619
Total requests: 2100004

Bruteforce complexity: 100000000

IRatio: 2.10%
lElapsed: 0d ®h 46m 5s
IChar ----> Traces

'3 ----> 156060

'1' ----> 15600

'3' ----3> 156000

'3 ----3 15000

'T7T! === 156000

'8! 156000

‘9! 15660

Confidential

\\U" |

Cristofaro Mune

Product Security Consultant

c.mune@pulse-sec.com

Confidential

mailto:c.mune@pulse-sec.com

