URIT
4 gct Yy I
& (A
Q

S <
- Q E
® S z
P go— =] (=]
‘ ry- | ‘ H Z ‘l(// 1\\" \)

= ‘

v v E—— \x-::i::’-') \ /

N et
NO RHAT 2022

Glitching devices for code execution

Niek Timmers Cristofaro Mune
niek@raelize.com cristofaro@raelize.com

@tieknimmers @pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Goals

* Discuss how Fl attacks to gain arbitrary code execution on devices

* Regardless of CPU architecture

* |n absence of SW vulnerabilities

* Show how SW-based countermeasures can be entirely bypassed

* Discuss techniques that allow to loosen timing requirements

Contribute to the field

Agenda

* F(l)oundations

* Fleld systematization

* SW-based countermeasures

* Achieving PC control and countermeasures bypass

* Loosening time requirements

F(l)oundations.

(F)Inception: Natural Phenomena

S0 r nergetic Particles
“{Solar Particle Events or
Coronal Mass Ejections)

Alpha decay

Ziegler, Lanford —=*Effects of cosmic rays on computer memories” May, Woods =“Alpha-particle-induced soft errors in dynamic memories”

(1979) (1979)

https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948

First attacks (Academia): Differential Fault Analysis

* Boneh, DeMillo, Lipton — “On the Importance of Checking
Computations (Extended abstract)” (1996)

* No paper seems available nowadays

* Referred by a Bihan-Shamir note (1996)

* https://cryptome.org/jya/dfa.htm#Bellcore

* Now known as “Bellcore attack”

* Single fault attack recovers RSA private key on CRT signature

https://cryptome.org/jya/dfa.htm#Bellcore

First attacks (Hacking): Unlooper

* Target: Pay-TV Smart Cards

* Hacked smart cards were remote disabled

* Clock glitching

* Revive hacked smart cardsl!

* “Jump out" of an infinite loop

Traditional attacks

Differential Fault Analysis (break crypto)

DOOcB420h: DO EF AA FB 43 4D 3 35S 43

Bypass checks

R11, R6, #HOx1006
RO, R8 ; s1

R1, R11 ; s2
strcmp

RO, #6

loc_DA34
LDR R6, [R6,R18] R11, R11, #0x20

Secure boot

Flash

OOV, WNPRE

19

FI attack on Secure boot

int load_exec_next_boot stage() {

// Destination addresses in SRAM

uint32 t img_addr
uint32 t sig _addr

0xd000000e0 ;
0xd1000000 ;

// Copy next stage imaga’g::;—::;;h to SRAM

load next_stage img(img_addr);

// Copy signature from Fla
load _next_stage signature(

if (verify signature(img_addr, sig _addr)) { Wg

// Wrong signature. Reset system

reset_SOC();
}

// Signature valid. Exec next stageEEEE:>
e(img_addr);

}

m
sig _addr);

Flash

10

Why does it works?

* “Instruction skipping”

* Glitch assumed to “skip instructions” = conditional instructions are not

executed

* Execution flow “falls through”

* Widely used description in academia and industry:

* Dominated Fl attack modeling for 30+ years.

Our first Fault Model!

11

Attack execution

* “Instruction skipping”
requires accurate timing

* Synchronization with target

often required

* Can be executed blindly:

* i.e. no assumption on type

of fault

e “Glitch ‘n pray”

12

Example: ESP32 Secure Boot bypass (1)

\

Pin1 of SPI flash Trigger high

Trigger low

D E F G

We use Flash communication for synchronization (triggering)

Example: ESP32 Secure Boot bypass (2)

Trigger low

D E F

Glitch injected somewhere after the bootloader is copied.

No control whatsoever...

...is it just randomness and luck?

15

Science: Fleld systematization.

16

Effects of a fault

— Control Flow,

A
Data Flow _
Software
Instructions
“Hardware” I

©

]

< E
Logical gates,

~—— Root Cause

[2018]: Yuce, Schaumont, Witteman

Effects of a fault++

— Control Flow,

[
»

Data Flow
Software
Instructions
“Hardware” I
4 3
< E

OTP, JTAG, CPU,...

Logical gates,
Memory Cells, Flip Flops

Fault Model

* A glitch may cause the system to misbehave in multiple manners

* Not easily predictable...if predictable at all

* Multiple kind of faults may be generated

* Not all the faults are interesting and can be used in an attack

* Fault model: defines the relevant set of faults

* i.e. that can be leveraged into an exploit

19

Fault Models and attacks

Fault Model Attack example

— Control Flow,

I T T —— ESP32 Secure Boot bypass

-
—————————————————

Software

Instructions
“Hardware”

OTP, JTAG, CPU,...

___——————————————--_-
- -

Bit zero-ing/flipping p-1 ESP32 OTP glitching

-
i o o e e e

~-___
N NN NS S S S S S -

Logical gates,
Memory Cells, Flip Flops

https://raelize.com/blog/espressif-systems-esp32-bypassing-sb-using-emfi/

Fault Injection Reference Model (FIRM)

Activate Inject Glitch Exploit

Modeling an Fl attack.

More in details...

§ Q)
y %

! f
J i
1 "

R |
&
) K

More information: https://raelize.com /posts /raelize-fi-reference-model/

https://raelize.com/posts/raelize-fi-reference-model/

Key points

Fl vulnerability: sensitiveness to a Fl technique

* E.G. Target may be vulnerable to EM but not to voltage glitching.

A Fl vulnerability always occurs in hardware

* Software only concurs to its exploitability

The same vulnerability may yield different faults

Effects of a single fault may fall within multiple fault models.

Different fault models yield different attacks

23

SW-based countermeasures.

24

FI countermeasures overview

7 X
y ¥
J It
|
i
P
R 3

SW-based countermeasures.

Multiple checks

* Checks are performed

multiple times

* Assumption:

* A glitch is required for

every check

26

Making synchronization harder

* Random delays are

introduced around critical
checks

* Location in time is not
fixed anymore

* Assumption:

* A glitch must “hit” a
specific point in time

27

Observations

* SW-based countermeasures are widely used in the industry and academia
* Multiple checks and random delays are two prominent examples

 Additional countermeasures available

* Commonly advised and implemented in Fl-resistant targets

* They reduce attack success rate:
* Multiple glitch required

* Target synchronoziation more difficult

28

Untold(?) assumptions...

* SW-based countermeasures...require SW to be executed:

* E.g. multiple checks

* Attack is expected to:
* target specific checks (strong attack “locality”)

* be very precise in time for hitting specific instructions:

* E.g. sharp glitches, multiple triggering...

Instruction skipping fault model assumed!

29

What if...we switch to another fault model?

K10)

Instruction corruption.

31

Instruction corruption

* Glitches may corrupt instructions (examples on ARM32)

* Single bit corruptions add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

* Multi bit corruptions

ldr x@, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000

* Most chips are affected by this fault model

* Which bits can be controlled, and how, depends on the target, ...

* As software is modified; any software security model breaks

Data transfers are a great target

e All devices transfer data

* From memory to memory

* Using external interfaces

Transferred data may be under attacker’s control

memcpy()

* It's everywhere.

* SW security: Parameters are typically checked (dest, src and n)

* Transferred content itself not considered security critical

Let’s use it as a Fault Injection target...

Example: USB data transfer

Destination reg modified to PC
0000000 <memcpy>:

0: €92de070 push {r4, r5, r6}

00000004 <loop>:
: e8b18078 1ldm r1!, {r3, r4,
: 820078 stm ro!, {r3, r4,
:e2522020 subs r2, r2, #32
: aafffffb bge 4 <ldmloop>

: e8bde070 pop {r4, r5, ré6}
Attacker datth being transferred : e12fffle bx 1r

PC set to attacker data. Control flow directly hijacked!

Attack summary (ARM32)

* Corrupt instruction

* Modify load instruction operands (destination register)

* Directly addressable PC is set to attacker controlled value

We regularly use this technique...

* Escalating privileges from user to kernel in Linux

* ROOting the Unexploitable using Hardware Fault Injection @ BlueHat v17

* Bypassing encrypted secure boot
* Hardening Secure Boot on Embedded Devices (@ Blue Hat IL 2019

* Taking control of an AUTOSAR based ECU
 Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

Nice! Does it work on other architectures?

38

Definitely!

* We identified multiple variants and techniques

* Yield arbitrary code execution:
* from controlled data only

* By corrupting instruction destination registers
* Sufficiently generic to work across multiple architectures

* Examples:
* Corrupting stored PC (in regs) or SP
* Hijacking jump /call (through registers)

* Corrupting callee saved regs (across function calls)

More interesting examples in our research!

39

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf

Example: ARMv8 RET instruction

* Used for returning from a function call.

* Return address stored in register (default X30)

[31 30 29 28|27 26 25 24|23 22 21 20/19 18 17 16|15 14 13 12|11 1§

* It has the following encoding: [+ 107 o1 i[ofo]1 o]t 11 [oo o oJo[i] R oo 000

A

* RET instruction can encode any register (x0 to x30)

Real world example

* Google Bionic’s (LIBC) memcpy

* Copying 16 bytes executes the following code:

memcpy :
0:8b020024
e Source data resides in x6 and x7 1 Sbo2000L
8:1100405f
* Source data is not wiped before RET .f354@@@229
50:f100205f
54:540000e3

58:19400026

5c:1¥85f8087
60:19000006

* Glitch RET instruction into RET x6 or RET x7: _niuq, [oSSEees

68:d651f03cO

* Equivalently glitch Idr x6, ... to Idr x30, ...

PC hijacked from controlled data.

add x4, x1, x2
add x5, x@, x2
cmp X2, #0x10
b.1s50 <memcpy+0x50

cmp X2, #0x8

b.cc70 <memcpy+0x70>
ldr x6, [x1]

ldurx7, [x4, #-8]
str x6, [x0]

sturx7, [x5, #-8]
ret

“Instruction corruption”: Recipe for success

* |dentify data transfers you control

* Set your transfer payload to a sled of pointers

* Point to your shellcode location

* Glitch during ANY memcpy

* PC control

A stack overflow...without SW vulns ©

42

1
2
3
4
5
6
7
8
9

Attacking Secure Boot

int load _exec_next boot stage() {

// Destination addresses in SRAM
uint32 t img_addr = 0xd0000000;

uint32 t sig W
// Copy next¥tag ge from Flash to S
load next stage img(img_addr);

// Copy signature from Flash to SRAM
load next stage signature(sig_addr);

random delay();

if (verify signature(img_addr, sig_addr)) {
reset SOC();

I

random delay();

if (verify signature(img_addr, sig_addr)) {
reset SOC();

}

random delay();

if (verify signature(img_addr, sig addr)) {
reset SOC();

iy

random delay();

// Signature valid. Exec next stage code
exec stage(img_addr);

Flash

pointers sled

(img_addr)

* Payload loaded at img_addr
* Pointer sled after payload

* Gilitch during pointer sled transfer

43

SW-based countermeasures bypass

1 ﬁnt load exec next boot stage() {

P

// Destination addresses in SRAM Flash
uint32 t img_addr = 0xd000O0O00;
uint32 t sig addr = 0xd1000000;

*img addr();

pointers sled

(img_addr)

* PC value set to img_addr
* Control flow hijacked

* SW-based countermeasures not executed

44

Key points

* SW-based countermeasures completely ineffective:

e Countermeasures code not executed

* The attack:

* does NOT target checks. Is unrelated to checks location (weak locality)

* Can target ANY data transfer before SW checks

* ROM control flow hijacked:

* Instruction “skipping” only yields bootloader-level access

Very hard to protect against. Applicable to Fl-resistant targets.

45

Trigger high

Pin1 of SPI flash

Trigger low ‘ HH"

0 10,0ms

We inject glitches in a small ‘attack window’ while the bootloader is being copied.

Success

S 56.00 S-S HIBE 60— DI HIEE 00000 G0 DN S-S DI H00 S 00 I I 008060 I SO0 00000 0000 M N 00 10 45 RN S BB

First experiment m—) .c)$} exXperiment

P o W, e [? Type Count Percentage

expected 56867 97,04
SUCCess 251 0,43

mute/rese 1482 2,53

IimEStelmPE

We achieve a success rate of 2 successful glitches per minute
where we load an arbitrary value into the program counter.

Loosening time constraints.

48

Observations

* memcpy():
* Loads data into registers

* Control flow loops (depend on transfer size)

e Sometimes under attacker’s control

* Glitch modifies load instruction register

* Control flow hijacked at function exit

A very large number of opportunities.

49

Glitch precision not required

Pin1 of SPI flash Trigger high

Trigger low

Multiple data transfers

g6
,;] fa £’(’;G ’
GG G

GGe Expectedp . @ G
44 Success | $6G Ge & ¢
«c G @
Mute LG, 4 ,
A T (TG G e G(r’{l z G oG e Vi
500 1000 2000 2500
Glitch Delay (ns)

n
c
s
el
o
c
0
-
T
o
-
O

Linux kernel PC control with userspace data.

“Time is on my side”

* Large time windows for glitching
* ANY data transfer with controlled data...can be a target
* We can have very loose synchronization with the target

* Precise triggering often not with required

(Almost) triggerless attacks.

52

Conclusion.

53

Final considerations

* FI SW based countermeasures are historically based on “instruction
skipping”
* |Instruction corruption attacks are very interesting for code execution
* May yield direct PC control
* Only require data control

* Any data transfer can be a target

* May allow for loose target synchronization and easier setups

* Modern strong targets may still be vulnerable to “Instruction corruption”
attacks:

* SW-based countermeasures may be bypassed

54

4 ‘ 4 L Y
/ —
| | - /L \\\\.;: —

Thank you! Any questions!?

Niek Timmers Cristofaro Mune
niek@raelize.com cristofaro@raelize.com

@tieknimmers @pulsoid

55

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

