
Glitching devices for code execution

1

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

2

Contribute to the field

Goals

• Discuss how FI attacks to gain arbitrary code execution on devices

• Regardless of CPU architecture

• In absence of SW vulnerabilities

• Show how SW-based countermeasures can be entirely bypassed

• Discuss techniques that allow to loosen timing requirements

Agenda

• F(I)oundations

• FIeld systematization

• SW-based countermeasures

• Achieving PC control and countermeasures bypass

• Loosening time requirements

3

F(I)oundations.

4

5

(F)Inception: Natural Phenomena

Ziegler, Lanford –“Effects of cosmic rays on computer memories”

(1979)

May, Woods –“Alpha-particle-induced soft errors in dynamic memories”

(1979)

https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948

First attacks (Academia): Differential Fault Analysis

• Boneh, DeMillo, Lipton – “On the Importance of Checking

Computations (Extended abstract)” (1996)

• No paper seems available nowadays

• Referred by a Bihan-Shamir note (1996)

• https://cryptome.org/jya/dfa.htm#Bellcore

• Now known as “Bellcore attack”

• Single fault attack recovers RSA private key on CRT signature

6

https://cryptome.org/jya/dfa.htm#Bellcore

First attacks (Hacking): Unlooper

• Target: Pay-TV Smart Cards

• Hacked smart cards were remote disabled

• Clock glitching

• Revive hacked smart cards!

• “Jump out" of an infinite loop

7

Traditional attacks

8

Bypass checks

Differential Fault Analysis (break crypto)

Secure boot

9

Signature

Flash

Boot stage

FI attack on Secure boot

10

Signature

Flash

(Attacker)

Boot stage

11

Our first Fault Model!

Why does it works?

• “Instruction skipping”

• Glitch assumed to “skip instructions” → conditional instructions are not

executed

• Execution flow “falls through”

• Widely used description in academia and industry:

• Dominated FI attack modeling for 30+ years.

Attack execution

• “Instruction skipping”

requires accurate timing

• Synchronization with target

often required

• Can be executed blindly:

• i.e. no assumption on type

of fault

• “Glitch ‘n pray”

12

We use Flash communication for synchronization (triggering)

Example: ESP32 Secure Boot bypass (1)

Bootloader copy to SRAM

Trigger low

Pin1 of SPI flash Trigger high

Glitch injected somewhere after the bootloader is copied.

Example: ESP32 Secure Boot bypass (2)

Trigger low

Pin1 of SPI flash Trigger high

No control whatsoever…

…is it just randomness and luck?

15

Science: FIeld systematization.

16

Effects of a fault

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

Ef
fe

ct
s

[2018]: Yuce, Schaumont, Witteman

Root Cause

Effects of a fault++

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

SubsystemOTP, JTAG, CPU,…

Ef
fe

ct
s

Fault Model

• A glitch may cause the system to misbehave in multiple manners

• Not easily predictable…if predictable at all

• Multiple kind of faults may be generated

• Not all the faults are interesting and can be used in an attack

• Fault model: defines the relevant set of faults

• i.e. that can be leveraged into an exploit

19

Fault Models and attacks

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

SubsystemOTP, JTAG, CPU,…

Instruction Skipping

Fault Model

Bit zero-ing/flipping

Attack example

ESP32 Secure Boot bypass

ESP32 OTP glitching

https://raelize.com/blog/espressif-systems-esp32-bypassing-sb-using-emfi/

Fault Injection Reference Model (FIRM)

Modeling an FI attack.

More in details…

More information: https://raelize.com/posts/raelize-fi-reference-model/

https://raelize.com/posts/raelize-fi-reference-model/

Key points

• FI vulnerability: sensitiveness to a FI technique

• E.G. Target may be vulnerable to EM but not to voltage glitching.

• A FI vulnerability always occurs in hardware

• Software only concurs to its exploitability

• The same vulnerability may yield different faults

• Effects of a single fault may fall within multiple fault models.

• Different fault models yield different attacks

23

SW-based countermeasures.

24

SW-based countermeasures.

FI countermeasures overview

Multiple checks

• Checks are performed

multiple times

• Assumption:

• A glitch is required for

every check

26

Making synchronization harder

• Random delays are

introduced around critical

checks

• Location in time is not

fixed anymore

• Assumption:

• A glitch must “hit” a

specific point in time

27

Observations

• SW-based countermeasures are widely used in the industry and academia

• Multiple checks and random delays are two prominent examples

• Additional countermeasures available

• Commonly advised and implemented in FI-resistant targets

• They reduce attack success rate:

• Multiple glitch required

• Target synchronoziation more difficult

28

29

Instruction skipping fault model assumed!

Untold(?) assumptions…

• SW-based countermeasures…require SW to be executed:

• E.g. multiple checks

• Attack is expected to:

• target specific checks (strong attack “locality”)

• be very precise in time for hitting specific instructions:

• E.g. sharp glitches, multiple triggering…

What if…we switch to another fault model?

30

Instruction corruption.

31

Instruction corruption

• Glitches may corrupt instructions (examples on ARM32)

• Single bit corruptions

• Multi bit corruptions

• Most chips are affected by this fault model

• Which bits can be controlled, and how, depends on the target, …

• As software is modified; any software security model breaks

add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

ldr x0, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000

• All devices transfer data

• From memory to memory

• Using external interfaces

Data transfers are a great target

Transferred data may be under attacker’s control

USB

UART

ETH

ROM

SRAM

Flash DDR

CPU

GSM RF

Let’s use it as a Fault Injection target…

memcpy()

• It’s everywhere.

• SW security: Parameters are typically checked (dest, src and n)

• Transferred content itself not considered security critical

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b18078 ldm r1!, {r3, r4, r5, r6, pc}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

PC set to attacker data. Control flow directly hijacked!

Example: USB data transfer

Interface

(USB)

Input

buffer

Command

buffer

Command

handler

Output

buffer

Attacker data being transferred

Destination reg modified to PC

Attack summary (ARM32)

• Corrupt instruction

• Modify load instruction operands (destination register)

• Directly addressable PC is set to attacker controlled value

We regularly use this technique…

• Escalating privileges from user to kernel in Linux

• R00ting the Unexploitable using Hardware Fault Injection @ BlueHat v17

• Bypassing encrypted secure boot

• Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

• Taking control of an AUTOSAR based ECU

• Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

Nice! Does it work on other architectures?

38

39

More interesting examples in our research!

Definitely!

• We identified multiple variants and techniques

• Yield arbitrary code execution:

• from controlled data only

• By corrupting instruction destination registers

• Sufficiently generic to work across multiple architectures

• Examples:

• Corrupting stored PC (in regs) or SP

• Hijacking jump/call (through registers)

• Corrupting callee saved regs (across function calls)

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf

Example: ARMv8 RET instruction

• Used for returning from a function call.

• Return address stored in register (default X30)

• It has the following encoding:

• RET instruction can encode any register (x0 to x30)

Real world example

• Google Bionic’s (LIBC) memcpy

• Copying 16 bytes executes the following code:

• Source data resides in x6 and x7

• Source data is not wiped before RET

• Glitch RET instruction into RET x6 or RET x7:

• Equivalently glitch ldr x6, … to ldr x30, …

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

PC hijacked from controlled data.

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

42

A stack overflow…without SW vulns ☺

“Instruction corruption”: Recipe for success

• Identify data transfers you control

• Set your transfer payload to a sled of pointers

• Point to your shellcode location

• Glitch during ANY memcpy

• PC control

Attacking Secure Boot

• Payload loaded at img_addr

• Pointer sled after payload

• Glitch during pointer sled transfer

43

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

SW-based countermeasures bypass

• PC value set to img_addr

• Control flow hijacked

• SW-based countermeasures not executed

44

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

45

Very hard to protect against. Applicable to FI-resistant targets.

Key points

• SW-based countermeasures completely ineffective:

• Countermeasures code not executed

• The attack:

• does NOT target checks. Is unrelated to checks location (weak locality)

• Can target ANY data transfer before SW checks

• ROM control flow hijacked:

• Instruction “skipping” only yields bootloader-level access

We inject glitches in a small ‘attack window’ while the bootloader is being copied.

Example: ESP32 PC control

Pin1 of SPI flash

Trigger low

Trigger high

Success

We achieve a success rate of 2 successful glitches per minute
where we load an arbitrary value into the program counter.

Loosening time constraints.

48

49

A very large number of opportunities.

Observations

• memcpy():

• Loads data into registers

• Control flow loops (depend on transfer size)

• Sometimes under attacker’s control

• Glitch modifies load instruction register

• Control flow hijacked at function exit

Glitch precision not required

Glitch anytime here

Trigger low

Pin1 of SPI flash Trigger high

Transfer length

under attacker’s control

51

Linux kernel PC control with userspace data.

Multiple data transfers

52

(Almost) triggerless attacks.

“Time is on my side”

• Large time windows for glitching

• ANY data transfer with controlled data…can be a target

• We can have very loose synchronization with the target

• Precise triggering often not with required

Conclusion.

53

Final considerations

• FI SW based countermeasures are historically based on “instruction

skipping”

• Instruction corruption attacks are very interesting for code execution

• May yield direct PC control

• Only require data control

• Any data transfer can be a target

• May allow for loose target synchronization and easier setups

• Modern strong targets may still be vulnerable to “Instruction corruption”

attacks:

• SW-based countermeasures may be bypassed

54

Thank you! Any questions!?

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

55

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

