
Breaking SoC Security by Glitching OTP Data
Transfers

1

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Introduction.

2

Cristofaro Mune

• Co-Founder; Security Researcher

• 20+ years in security

• 15+ years analyzing the security of complex systems and

devices

“in between” SoftwareHardware

3

Our research: https://raelize.com/blog
(Devices, TEEs, Secure Boot, FI,…)

Niek Timmers

• Co-Founder; Security Researcher

• 10+ years experience with analyzing the security of

devices

https://raelize.com/blog

SoC security

• Security features are

becoming increasingly relevant

• Also present on low-cost SoCs

• OEM use cases (examples):

• Sensitive/critical devices

• Device-based services

• IP protection

4

Fault Injection (FI)

• Concept now familiar to security

researchers

• More accessible tooling:

• Hi NewAE!

• Advanced techniques presented at

public security conferences:

• Hi hardwear.io!

• Still missing (but improving!):

• Field systematization

• Integration of security, academia,

industry approach/results

5

ChipSHOUTER-PicoEMP

https://www.newae.com/
http://hardwear.io/
https://github.com/newaetech/chipshouter-picoemp

6

Contribute to the field

Goals

• Show how SoC security depends on OTP data

• Present advanced FI attacks targeting OTP data transfers

• Share our results (EMFI on ESP32):

• …

• Be patient! ☺

• Discuss possible countermeasures

Context.

7

In 2019, we…

• Presented Secure Boot talk at

BlueHat IL (Feb 2019)

• Bypassed encrypted secure boot

• We love live demos!

• Described an FI attack targeting OTP

transfers:

• Generic. Not specific to a SoC.

8

https://raelize.com/upload/research/2019/2019_BlueHat-IL_Hardening-Secure-Boot-on-Embedded-Devices-for-Hostile-Environments_NT-AS-CM.pdf

Lots of interest!

ESP32

• Popular IoT system-on-chip (SoC)

• 32-bit Xtensa LX6 CPU

• Internal and external memories

• Many peripherals and other interfaces

• Hardware-backed security features:

• Secure Boot

• Flash Encryption

• JTAG disable

First FI public attacks

• Limited Results performed multiple FI attacks towards ESP32

• VCC glitching

• Targeted AES Crypto core (driver)

• Secure Boot bypass

• Dump of OTP protected keys:

• Secure Boot and Flash Encryption keys

• Targeted OTP data transfer

10

https://limitedresults.com/2019/08/pwn-the-esp32-crypto-core/
https://limitedresults.com/2019/09/pwn-the-esp32-secure-boot/
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/

Our FI attacks (2020)

• Performed with EM FI

• Secure Boot bypass:

• Achieved PC control with FI (via instruction modification)

• Flash Encryption bypass

• Secure Boot + Flash Encryption bypass:

• Leveraged SRAM data persistence + PC control with FI (via instruction modification)

• Single glitch attack

• No knowledge of encryption key required

11

https://raelize.com/blog/espressif-systems-esp32-controlling-pc-during-sb/
https://raelize.com/blog/espressif-systems-esp32-bypassing-flash-encryption/
https://raelize.com/blog/espressif-esp32-bypassing-encrypted-secure-boot-cve-2020-13629/

One Time Programmable (OTP) Memory.

12

OTP: Memory Cell

• Bits can be set only once and cannot revert

• Physical modification of the cell

• No observable difference after

programming with secure variants

• E.g. antifuse

• Typically:

• A programmed cell represents a ‘1’

• OTP contains data (e.g. configuration) or secrets

(e.g. keys)

Programmed poly Efuse (Source)

Programmed poly antifuse (Source)

Programmed Efuse (Source)

https://semiengineering.com/the-benefits-of-antifuse-otp/
https://archive.eettaiwan.com/www.eettaiwan.com/emag/1302_15_DC.html
https://semiengineering.com/the-benefits-of-antifuse-otp/

OTP: Cell Array

14
Example of OTP Cell Array organization (Source)

http://slideplayer.com/slide/17546790/

OTP: Memory organization

• Typically divided in regions

• Single Bit access/control:

• For security features configuration (e.g. JTAG disable)

• Multiple bits access/control:

• For bulk data (e.g. keys)

• Regions (or subsets) can be read/write protected:

• Dedicated OTP bits

• Write protection needed for preserving ‘0’ values:

• i.e. Region is “locked”

15

OTP controller

16OpenTitan OTP controller (Source)

OTP Cell Array

Controlled by OTP

bits

External

communication

Bus

https://docs.opentitan.org/hw/ip/otp_ctrl/doc/

Example: ESP32

17

R/W protection

Configuration

Keys

OTP data transfers

• Reading from OTP may be slow

• Data is usually transferred to “shadow registers”

• To configure HW logic

• Faster access from SW

• Some shadow registers may be memory mapped

• For consumption by SW

• E.g. Secure Boot enable bits (used by ROM code)

• Others may be only accessible by HW logic:

• E.g. Unique device keys for KDF/Key Ladder operations

18

SoC HW Initialization

19

OTP Controller

CMD/RSP

OTP data

HW Crypto Engine

Root Key register

OTP Bank 1

OTP Bank 2

OTP Bank 3

OTP Bank …

OTP Array

Register 1

Register 2

Register 3

Register …

Memory Mapped Registers

CPU

Busses

FI opportunities

• OTP data transferred at boot time

• At multiple times

• Across multiple busses (with different speed)

• A successful glitch on ANY of those busses may:

• Modify transferred value(s)

• Leave OTP copy unaffected

• And bypass

• SW-based security features (CPU reads incorrect value)

• HW-based security features (HW logic incorrectly configured)

20

Does it really work!?

21

FI Characterization.

22

Our target

• Module: ESP32-WROOM-32

• SoC: ESP32 (first series)

• D0WDQ6

• No specific FI countermeasures

• We have not tested newer ESP32

SoC:

• E.g. ESP32-S2, ESP32-V2,..

• FI countermeasures are present

23

EMFI Setup overview

Experiment Setup (1)

• We set the following fuses:

• ABS_DONE0 for enabling Secure Boot

• SECURE_BOOT_KEY (BLK2) for setting the Secure Boot key

• RD_DIS_BLK2 for enabling read protection of Secure Boot key

• We program a valid bootloader that prints the fuses

Experiment Setup (2)

• We:

• scan the entire chip surface

• Glitch at boot time

• before first ROM printout

• Goal:

• Find a vulnerable location

• Change any of the fuse bits in Block 0 (Configuration) or Block 2 (Secure Boot

Key)

29

Performed during experiment

Results classification:

Results: XY scan

We have successful glitches!

Let’s zoom in…

Results analysis

Raelize.....Block 0: 00020100a3d2c1e00001c8c90000a000000001320000000000000014..

Raelize.....Block 0: 00020100a3d2c1e00001c8890000a000000001320000000000000014..

Raelize.....Block 0: 0002010083d2c1e00001c8c90000a000000001320000000000000014..

Raelize.....Block 0: 00020100a3d2c1e00001c8c90000a000000000320000000000000014..

Raelize.....Block 0: 00020100a3d2c1e00001c8c900008000000001320000000000000014..

Raelize.....Block 0: 00020100a3d2c1e00001c8490000a000000001320000000000000014..

Raelize.....Block 0: 00000100a3d2c1e00001c8c90000a000000001320000000000000014..

Raelize.....Block 0: 00020100a3d2c1e00001c8c90000a000000001320000000000000004..

Raelize.....Block 0: 00020100a3d2c0e00001c8c90000a000000001320000000000000014..

Timing dependency

Block 0: 00020100a3d2c1e00001c8c90000a000000001320000000000000014..

Block 0: 00000100a3d2c1e00001c8c90000a000000001320000000000000014..

Block 0: 00020100a3d2c1e00001c8c90000a000000001320000000000000004..

Observations

• Successful glitches in a narrow time region:

• Between 535us and 560us from reset

• Group at specific timing

• Single bit glitches of Block 0 (!):

• Mostly “1” turned to “0”

• Strong timing dependency of affected bits

35

We can disable security

features!

We can select which one

OTP bits “shooting”

36(Source)

https://www.championtarget.com/

Reducing parameters space

• We fix probe at a specific

location:

• Removes location from

parameters

• Selection criteria:

• % of successful glitches

• Applies for all the next

experiments

Let’s bypass security features!

38

1. Reading Secure Boot Key.

39

Setup

• We set the following fuses:

• ABS_DONE0 for enabling Secure Boot (SB)

• SECURE_BOOT_KEY (BLK2) for setting the SB key

• RD_DIS_BLK2 for enabling read protection of SB key

• We program a valid bootloader that prints the fuses

• SB key is unreadable due to read protection

• Goal:

• Extract SB key

• i.e. we need to change 1 fuse bit (RD_DIS_BLK2) during the transfer

Successful glitches!

Results analysis

Block 0: 00020100a3d2c1e00001c8c90000a000000001320000000000000014..

Block 1: 00..

Block 2: 00..

Block 0: 00000100a3d2c1e00001c8c90000a000000001320000000000000014..

Block 1: 00..

Block 2: 570b83258df3b44a8dbe92d8934a7e19b9e116d48c0b50fcebe4b056688860da..

RD_DIS_BLK2 changed!

We read SB key within minutes…

Success rate: Focused

• We also fix timing and power:

• We choose one successful

experiment randomly

• All parameters are now fixed

• Success rate: ~1%:

• Full Secure Boot Key obtained

• No bruteforce needed

Let’s double down!

44

2. SB bypass + Reading SB Key.

45

46

Can we glitch both?

The idea

• We can glitch specific Block 0 bits by attack timing

• Secure Boot and its key protected by “distant” OTP bits

Double glitch: Setup (1)

• We set the following fuses:

• ABS_DONE0 for enabling Secure Boot (SB)

• SECURE_BOOT_KEY (BLK2) for setting the SB key

• RD_DIS_BLK2 for enabling read protection of SB key

• We program an invalid bootloader that prints the fuses:

• Not executed unless Secure Boot is bypassed

• Goal:

• Bypass SB and print SB key

• i.e. we need to change 2 fuse bits (RD_DIS_BLK2, ABS_DONE0) during the transfer

Double glitch: Setup (2)

• Glitch 1 aimed at RD_DIS_BLK2

• Timing (glitch_delay) still randomized

• We re-use approximate timing from previous experiment

• Glitch 2 aimed at ABS_DONE0

• Timing (glitch_delay2) randomized

• Counted from glitch 1 timing

• We know the boundaries where Block 0 is affected

Successful glitches!

• Glitch 1: similar timing as previous experiment

• Glitch 2: timing is basically constant:

• Counting from glitch 1 drastically reduces jitter

Something interesting…

• Successful glitches occur in groups:

• Experiment ID is sequential

• Reason unknown. Guesses: Room temperature effects? SoC status?

We bypass SB and read SB key within 1 hour…

Success rate: Focused

• We fix timing and power:

• We choose one successful

experiment randomly

• Success rate: ~.05%:

• Full Secure Boot Key obtained

• No bruteforce needed

• Secure Boot bypassed

Bypassing Secure Boot and Flash Encryption?

52

We tried. No success… …but we got an idea!

3. JTAG glitching.

Experiment Setup (1)

• We set the following fuses:

• ABS_DONE0 for enabling Secure Boot

• SECURE_BOOT_KEY (BLK2) for setting the Secure Boot key

• RD_DIS_BLK2 for enabling read protection of Secure Boot key

• FLASH_CRYPT_CNT for enabling Flash Encryption

• FLASH_ENCRYPTION_KEY (BLK2) for setting the Flash Encryption key

• RD_DIS_BLK1 for enabling read protection of Flash Encryption key

• DISABLE_JTAG for disabling the JTAG interface

• We program a valid bootloader that prints the fuses

Experiment Setup (2)

• Goal:

• Open JTAG interface

• i.e. we need to change 1 fuse bit (DISABLE_JTAG) during the transfer

• Use JTAG to extract plaintext firmware

• …and bypass Flash Encryption

• Once opened, JTAG can be also used to execute arbitrary code:

• i.e. bypass Secure Boot

57

Check if JTAG_DISABLE is unset

Results classification:

Successful glitches!

Timing (Successful glitches)

We open JTAG within a few minutes…

Success rate: Focused

• We fix timing and power:

• We choose one successful

experiment randomly

• Success rate: ~.05%:

• JTAG open → we read Flash in

plaintext

• Flash Encryption bypassed

• Secure Boot bypassed

Wanna see it?

61

Demo.

62

Flash Encryption bypassed

What can be done?

64

FIRM: Attack Analysis

65
Source: https://raelize.com/posts/raelize-fi-reference-model/

https://raelize.com/posts/raelize-fi-reference-model/

FIRM: Countermeasures

66
Source: https://raelize.com/posts/raelize-fi-reference-model/

https://raelize.com/posts/raelize-fi-reference-model/

Conclusions.

67

We have seen… (1)

• How OTP data transfers can be used to compromise SoC security

• FI attacks against pure HW implementations

• Bypass of critical SoC security features

• Before any SW is executed

• Before any CPU is released from reset

• Strong timing correlations allow for powerful attacks

68

We have seen… (2)

• FI (single glitch) attack to break ESP32 keys read protection:

• No bruteforce required

• Double glitch attack to additionally bypass Secure Boot

• FI (single glitch) attack to:

• Enable JTAG

• Bypass Flash Encryption

• Bypass secure boot

69

Final considerations

• FI attacks against OTP data are often overlooked

• Immutability at rest does not imply integrity in transfer

• Design may not include adequate protection:

• FI mostly used for targeting software

• Design-level mitigations are possible:

• E.g. Breaking timing correlations, Bus level integrity checking

70

Thank you! Any questions!?

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

71

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

