
Acquisition in the billions:
Breaking cryptographic keys with fast SCA

1

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Introduction.

2

Cristofaro Mune

• Based in The Netherlands. Specialized in Device Security

• Security testing, Consultancy and Training

• Low level software, hardware security:

• Secure Boot, TEE, Fault injection,…

Me

• Co-Founder at Raelize; Security Researcher

• 20+ years in security

• 15+ years analyzing the security of complex systems and

devices

“in between” SoftwareHardware

3

Our research: https://raelize.com/blog

https://raelize.com/blog

4

Raise awareness

Goals

• Outline usage of cryptographic keys in modern devices

• Introduce side-channel-attacks (SCA)

• Breaking AES via power analysis

• on a modern System-on-Chip (SoC)

• Demonstrate techniques for fast acquisition

• Billions of traces per day

• Reflect on implications

Of devices, keys and crypto(-graphy).

5

6

No intention of completeness!

Devices: cryptographic operations

• Several designs (and implementations) available

• For our purposes, let’s consider the following:

• Pure software (SW):

• Also in white-box cryptography (WBC) form

• Hardware-assisted:

• i.e. make use of hardware (HW) cryptographic accelerators

Modern device: HW cryptographic accelerators

NXP i.MX8 SoC

Hardware: Keys inaccessible to SW

• Device Unique Key(s):

• Stored in (e-)fuses or in the actual

digital logic (rarely)

• Directly loaded in HW crypto

engines slots

• No way for SW to read such keys:

• No interface available

8Qualcomm - Guard Your Data with the Qualcomm Snapdragon Mobile Platform (2019)

Rambus - RT-260 Root of Trust

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/guard_your_data_with_the_qualcomm_snapdragon_mobile_platform2.pdf
https://www.rambus.com/security/root-of-trust/rt-260/

AES in brief

• Advanced Encryption Standard (AES)

• FIPS PUB 197: Advanced Encryption Standard (AES)

• ISO/IEC 18033-3: Block ciphers

• Features:

• Symmetric cipher

• Block cipher: 128 bits (regardless of key size)

• Keys: 128, 192 and 256 bits

• Number of rounds depends on key size (10, 12 or 14 rounds)

Algorithm (128-bit key, encryption)

• Key Expansion

• avoid using the same key each round

• Add Round Key

• state ⊕ RKn

• Substitute Bytes

• apply S-Box to each byte of the state

• Shift Rows

• Row bytes rotation

• Mix Columns

S-Box

A “gentle” intro to…
Side channel analysis (SCA)

11

“A side channel is some observable aspect of a system
that reveals secrets within that system.”
– The Hardware Hacking Handbook

Inception: Bell 131-B2 (1943)

• Encrypted teletype used by U.S. Army and

Navy:

• One-time pads encryption

• Bell researcher noticed spikes in an oscilloscope

nearby

• Disbelief: Is it really dangerous? Prove it!

• Recovered 75% of plaintext from a different

building (~25m away)

• U.S. Army started clearing 30m perimeter

• Rediscovered in 1951

• Recovered plaintext over power lines (400m away)
TEMPEST: A signal problem

NSA Declassified document

https://cryptome.org/nsa-tempest.pdf

Power consumption

• Toggling data lines cause current

spikes through VDD (+) and GND

(-)

• Energy is a function of current

flowing through circuit:

• And so is Power!

Hardware Hacking Handbook

by Woudenberg & O’Flynn

https://nostarch.com/hardwarehacking

Power leaks!

• Power consumption can leak

information

• E.g. during usage of (supposedly)

secret data

•

This includes intermediates of a

cryptographic algorithm!

Hardware Hacking Handbook

by Woudenberg & O’Flynn

https://nostarch.com/hardwarehacking

Electromagnetic field leaks too.

• Electromagnetic emissions can

also leak information:

• Program flow

• Usage of (secret) data

Practical Electro-Magnetic Analysis

by Beer, Witteman, Gedrojc and Sheng

https://csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/documents/03_deBeer.pdf

Can we recover the key?

The challenge

• We have a device (target) performing AES encryptions

• Using a HW cryptographic accelerator

• They key is hidden in HW

• SW cannot access it

• i.e. ANY code execution will not give you the key

• We can encrypt:

• Whatever we want

• As many times as we want

18

Feel free to ask for more info

Notes

• Next slides provide a simplified overview of Differential Power

Analysis (DPA):

• Well…we only have 45m for this talk ☺

• DPA is a renowned SCA technique:

• Used in many labs around the world for security evaluations

• Supported by many academic papers and…

• …many many keys extracted from real devices!

The idea: Measure during encryption

19

????????????????????????????????

Key:

AES

42424242424242424242424242424242

Plaintext

31e33a6e5250909a7e518ce76d2c9f79

Cyphertext

Oscilloscope

Oscilloscope Memory

The idea: Acquire MANY traces

• Execute the cryptographic

algorithm a large number of

times:

• Vary the input randomly

• Acquire power traces:

• while the cryptographic algorithm is

being executed

• For each trace store:

• The power profile

• The input and the output (If

available) data

Differential Power Analysis (DPA)

• Algorithm computes intermediate values:

• Their actual value depends on the input and the key

• Power profiles give information on the intermediate values

• Only one key can:

• generate the right intermediates for all the input values

• “match” the generated power consumption profiles

DPA: “Guessing the key”

• Select a key candidate

• Compute all intermediates for the candidate key:

• For each input value

• Look for a key whose intermediates can “match” all power profiles for all input values

• In practice:

• Compute correlation (Pearson) between the intermediates and traces values (at each sample)

• Correct key should exhibit highest correlation

The idea: Matching
Key candidate A
R1SubBytes[0][0]

Key candidate B
R1SubBytes[0][0]

R1 SuBytes operation

7b

ca

17

96

A4

03

68

fe

6e

74

17

a1

7b

56

68

8a

Key A matches!

Our target: ESP32.

24

Espressif ESP32

ESP32-D0WDQ6

ESP32 SoC: diagram

Execution units
Cryptographic hardware

Our setup: Target

• Custom board:

• Easier access to signals

• Power CPU subsystem independently

• Application on target that can:

• Set an arbitrary key

• Operate the HW engine to perform

encryptions/decryptions

• Send a trigger to oscilloscope to start

acquisition before encryption starts

27

Our setup: Acquisition

• Riscure Current Probe:

• For power measurements

• Picoscope 3406D:

• Love that scope!

• FTDI 2232H:

• Serial communications

• For sending plaintext and receiving cypher

text

• Power the target: 3.3V

• A separate 3.3V battery package:

• Cleaner measurements

28

Reconnaissance and acquisition.

29

AES128 Encryption: Duration

• Time for one single encryption: 3.157 us

30

AES128 Encryption: Power profile

• Power profile does not show evident AES128 artifacts:

• E.g. 10 repeated patterns (rounds)

31

32

Can we get the key?

Let’s collect more traces!

• 20000 traces

• 1700 samples at 500

Mbit/s:

• i.e. We acquires 3.4us

• Acquisition time: 3m 02s

• Acquisition speed: ~9.47

Million traces/day

Considerations: Speed

• HW cryptographic engines can be fast:

• Lower number of samples required (w.r.t SW implementations)

• Operation completes in a shorter time (w.r.t SW implementations)

• Acquiring Millions of traces/day is not uncommon

• Even with very simple setups

33

Input/Output correlation

• Correlation with input (plaintext) and output (ciphertext) bytes:

• Shows where such bytes are being “used”

• Key used:

• after input is received

• before output is generated

• between samples 800 and 950

34

Input correlation Output correlation
Algorithm uses key here

Known key analysis

• Take another device identical/similar to your target:

• Same SoC

Configuration as close as possible

• You must control it (i.e. be able to set your key)

• Set your own key → You can computed intermediates (for every input)

• Perform correlation analysis with power profiles

• You will get:

• If the SoC leaks information

• Where information leakage happens

35

Known key analysis: Settings

• Performed on 200k traces:

• Acquired in 30-40m

• Focus only between samples 800 and

950

• Leakage model:

• Hamming weight on S-box output

36

Known key analysis: Results

• Leakage for all key

bytes:

• Samples: 820 → 840

37

Success!

• Key can be retrieved in ~40m:

• 200k traces

• Acquisition time: ~30m

• Acquisition speed: ~9.4M traces/day

38

Can we go faster?
Segmented memory.

39

Acquisition cycle

40

AES

Plaintext

Cyphertext

Oscilloscope

Oscilloscope Memory

Trigger

Measurement

Segmented Memory

• Feature available on many modern oscilloscopes

• Scope internal memory can be “segmented” to store multiple traces

• Number limited by scope memory size

• Acquired traces are sent to PC in one single bundle

• Typical usage:

• Perform multiple measurements with the same input

• Traces can be averaged to reduce noise

41

Acquisition: Segmented memory

42

AES

Plaintext

Cyphertext

Oscilloscope

Oscilloscope Memory

Trigger

Measurement

43

Can we get the key?

Segmented memory + averaged traces

• 20000 traces:

• 100 traces in segmented

memory (iterations)

• 2000 input provided

• 150 samples

• Acquisition time: 25s

• Acquisition speed: ~675

Million traces/day

44

?

Nope.

• Input not sufficiently diversified

• Only 2000 plaintexts

• No sufficient leakage to reveal key:

• On this specific target

• How can we:

• Have sufficiently diversified input AND

• Minimize communication overhead with target

Speedy Gonzalez:
On-target input generation.

45

Generating input on target

• No need to provide input from PC

• It’s only sufficient to KNOW the input to the AES engine for each encryption operation

• Output not needed

• We are attacking encryption → AES round 1

• General idea:

• Only send an initial nonce

• Use a cryptographic function to generate next input

• Apply the same function on the PC side to compute the same input

• Examples:

• Recursively apply a Hash function to nonce

• Use AES engine output as input for next operation

46

Acquisition: On-target input generation

47

AES

Nonce

Oscilloscope

Oscilloscope Memory

Trigger

Measurement

48

Can we get the key now?

How fast can we go?

• 20000 traces:

• 50000 traces in segmented

memory (iterations)

• 4 bulk transfers to PC

• 1 sample: (nr. 820)

• Acquisition time: 12s

• Acquisition speed: ~2 Billion

traces/day

Yes!

• Key can be retrieved in ~1.5m:

• 200k traces

• Acquisition time: ~12s

• Acquisition speed: ~2B traces/day

49

Notes

• Even faster acquisition speed may be possible with further tuning

• We can now retrieve a key from ESP32:

• Used by the HW crypto engine

• By means of power analysis

• Using segmented memory

• Generating input on target

• Using Jlsca for analysis

• In less than 25s.

50

https://github.com/Riscure/Jlsca

Demo.

51

Technique is known and used!

• Research:

• Leakage Assessment Methodology - a clear roadmap for side-channel

evaluations - Schneider et. Al

• A flexible leakage trace collection setup for arbitrary cryptographic IP cores

- Moschos et. al.

• Apple vs. EMA: Electromagnetic Side Channel Attacks on Apple CoreCrypto -

Haas et. al.

• Using a magic wand to break the iPhone's last security barrier – tihmstar

• Also security/evaluation labs are (likely) using it ☺

53

https://eprint.iacr.org/2015/207
https://eprint.iacr.org/2015/207
https://ieeexplore.ieee.org/document/8383902
https://ieeexplore.ieee.org/document/8383902
https://eprint.iacr.org/2022/230
https://eprint.iacr.org/2022/230
https://hardwear.io/netherlands-2022/presentation/using-magic-wand-to-break-iPhone-last-security-barrier.pdf

Back to base:
Conclusions.

54

Summary

• Acquisition speed of millions of traces/day are common

• Billions of traces/day can be achieved:

• Under specific conditions

• Some degree of target control is required

• Technique is known, described in literature and actively used

55

Implications

• Claims of “resistance to SCA” should consider acquisition speeds in the

billions of traces/day:

• Evaluation/security labs

• Certification schemes

• Very fast attacks may be possible in some specific scenarios:

• E.g. when access to target is time constrained

56

Thank you!

57

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

	Slide 1: Acquisition in the billions: Breaking cryptographic keys with fast SCA
	Slide 2: Introduction.
	Slide 3: Me
	Slide 4: Goals
	Slide 5: Of devices, keys and crypto(-graphy).
	Slide 6: Devices: cryptographic operations
	Slide 7: Modern device: HW cryptographic accelerators
	Slide 8: Hardware: Keys inaccessible to SW
	Slide 9: AES in brief
	Slide 10: Algorithm (128-bit key, encryption)
	Slide 11: A “gentle” intro to… Side channel analysis (SCA)
	Slide 12: “A side channel is some observable aspect of a system that reveals secrets within that system.” – The Hardware Hacking Handbook
	Slide 13: Inception: Bell 131-B2 (1943)
	Slide 14: Power consumption
	Slide 15: Power leaks!
	Slide 16: Electromagnetic field leaks too.
	Slide 17: The challenge
	Slide 18: Notes
	Slide 19: The idea: Measure during encryption
	Slide 20: The idea: Acquire MANY traces
	Slide 21: Differential Power Analysis (DPA)
	Slide 22: DPA: “Guessing the key”
	Slide 23: The idea: Matching
	Slide 24: Our target: ESP32.
	Slide 25: Espressif ESP32
	Slide 26: ESP32 SoC: diagram
	Slide 27: Our setup: Target
	Slide 28: Our setup: Acquisition
	Slide 29: Reconnaissance and acquisition.
	Slide 30: AES128 Encryption: Duration
	Slide 31: AES128 Encryption: Power profile
	Slide 32: Let’s collect more traces!
	Slide 33: Considerations: Speed
	Slide 34: Input/Output correlation
	Slide 35: Known key analysis
	Slide 36: Known key analysis: Settings
	Slide 37: Known key analysis: Results
	Slide 38: Success!
	Slide 39: Can we go faster? Segmented memory.
	Slide 40: Acquisition cycle
	Slide 41: Segmented Memory
	Slide 42: Acquisition: Segmented memory
	Slide 43: Segmented memory + averaged traces
	Slide 44: Nope.
	Slide 45: Speedy Gonzalez: On-target input generation.
	Slide 46: Generating input on target
	Slide 47: Acquisition: On-target input generation
	Slide 48: How fast can we go?
	Slide 49: Yes!
	Slide 50: Notes
	Slide 51: Demo.
	Slide 53: Technique is known and used!
	Slide 54: Back to base: Conclusions.
	Slide 55: Summary
	Slide 56: Implications
	Slide 57: Thank you!

