
False Injections:
Tales of Physics, Misconceptions and Weird Machines

1

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Hardware

Security boundaries

Kernel
App

Userspace

AppApp

VM

HypervisorKernel
App

Userspace

AppApp

VM

Kernel
App

Userspace

AppApp

VM

TEE

“Microarchitecture”
2017:

Microarchitectural

attacks

3

Notes from Micro-architectural attacks [2017]

• Security models aren’t just a Software (SW) thing

• Most of the Hardware (HW) has no idea of security boundaries:

• unless factored in during design

• HW resources shared across security boundaries can be problematic

• It’s painful to recover

Hardware

Are we missing anything?

Kernel
App

Userspace

AppApp

VM

HypervisorKernel
App

Userspace

AppApp

VM

Kernel
App

Userspace

AppApp

VM

TEE

“Microarchitecture”

Physics

5

What can go wrong?

Walking on thin ice…

• The whole computing model assumes

that:

• the right logical values

• are correctly represented

• at the rising edge

• of each clock cycle.

• Everywhere

• That’s why we have constraints on

operating conditions (e.g.

temperature range)

Zussa et al –“Analysis of the fault injection mechanism related to negative and

positive power supply glitches using an on-chip voltmeter” - [ZDRC2014]

https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf

6

Examples: Natural Phenomena

Ziegler, Lanford –“Effects of cosmic rays on computer memories”

(1979)

May, Woods –“Alpha-particle-induced soft errors in dynamic memories”

(1979)

https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948

7

Physics and Computing

• The general relationship between Physics and Computing is mostly

unexplored in CS:

• R. P. Feynman – “Feynman Lectures on Computation” – Caltech lectures

• We are aware of “physical attacks”:

• Mostly seen as a computing problem

• More in general, physics fundamentals are just seldomly discussed:

• In academic papers, in the industry, as well as in the security community

• Maybe “left as an exercise to the reader…”?

8

How far does the rabbit hole go?

Consequences

• Imprecise descriptions

• Perpetuation of beliefs

• Incorrect/sub-optimal modeling

• (Lack of) identification of fundamental problems

Goals

• Show examples of gaps in our approaches

• We will be (mostly) using Fault Injection (FI) for our investigation

• Realize the potential of including physics in our model of computing:

• We will be identifying threats, opportunities and attacks

9

10

Voltage glitch shape.

11

Some widespread statements…

12

“Your glitch needs to be sharp…”

“You want to affect a single instruction…”

“CPU is fast. You need to be _very_ fast…”

“Hit within one single clock cycle…”

“you have to glitch WHEN the instruction is being executed…”

Assumptions?

• Fault is introduced by the glitch shape

• regardless of target’s physical parameters. (e.g.: Impedance, amount of stored energy, …)

• Glitch effectiveness depends on its shape/sharpness

• Precision depends on sharpness

• To be adjusted to CPU speed

• Glitch is somewhat instantaneous

13

14

Glitch effect cannot be instantaneous

Physics has objections…

• Glitch effect cannot travel faster than

light

• We need to consider two different

times:

• Time of glitch (Tg)

• Time of fault (Tf)

~3mm

In literature: Shaping the Glitch

• Effectiveness of glitch shape has been investigated:

• “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks” - Bozzato et

al

• Confirmed that arbitrarily shaped voltage glitches may be effective

• Tests performed targeting security protections preventing firmware

dump

• No actual analysis of effects on CPU instructions execution

15

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://tches.iacr.org/index.php/TCHES/article/view/7390/6562
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://tches.iacr.org/index.php/TCHES/article/view/7390/6562

Shaping the Glitch: Research aproach

• Measured parameters shaping vs attack success

• No analysis on the underlying physics mechanisms that causes faults:

• Reference to [ZDRC2014] (discussed later)

16

?

https://hal-emse.ccsd.cnrs.fr/emse-01099010

17

…without an answer (yet)

Still many questions…

• Has a glitch to be sharp in order to affect a single instruction?

• Does a glitch need to be faster than a single clock cycle?

• Are multiple glitch shapes possible and effective in attackin CPU code

execution?

• Or are we just constrained to a single shape?

Let’s perform some experiments!

18

Target: Espressif ESP32 (D0WDQ6)

• A feature-rich SoC with integrated Wi-Fi

and Bluetooth connectivity

• Relevant (for us) features:

• Clock speed: 80, 160, 240 MHz

• Nominal voltage: 3.3 V

• CPU architecture: Xtensa

Espressif ESP32 – Power Scheme

We glitch both CPU and

RTC at the same time

Raelize ESP32 Training Target v1.2

• Custom board for easy signal

access during FI experiments:

• Reset

• UART TX/RX

• Trigger

• VCC (main power @ 3.3V)

• used for subsystems other than CPU. E.g.

Flash

• Voltage Glitch (CPU + RTC)

We are going to use the latter

Generating a voltage glitch: techniques

• Original power source is retained:

• Power line is pulled down to GND (“crowbar”)

• Used by common hacking tools

• Original power source is replaced:

• power supplied to the target is fully controlled in the experiment

Our setup

• Riscure Spider:

• FPGA used for

• Glitch generation

• Glitch timing

• Target reset

• Riscure Amplifier:

• More stable glitch

• Espressif ESP-PROG:

• Serial communications

• Powering the main target power

rail (3.3V)

23

* Source: Riscure website

*

*

In real life…

24

Oscilloscope

FPGA

ESP-Prog

Glitch Amplifier

Target

Target code: single add instruction

Add instruction: adds 1 to a6

NOP Macros

1024 NOPs

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Our Target: 1 add instruction

Print a6. Should be 1 (if not glitched)

1024 NOPs

Attack Window

26
1024 NOPs 1024 NOPsTarget expected timing

(approximate)

Attack Window

Glitch parameters

27

glitch_delay (ns)

glitch_voltage (Volts)

normal_voltage (Volts)

glitch_length (ns)

28

Data visualization provides valuable information

FI campaign

• Normal voltage: Fixed. 2.1V

• Glitch delay: Random. Between 10us and 13.2us

• Glitch voltage: Random. Between 0.5V and 2.1V

• Glitch length: Random. Between 200ns and 5000ns

• Experiments: ~270k

• Success: 32 (0.01%)

Distribution: glitch_voltage vs glitch_length

29

• Green: No effect

• Yellow: Garbage output/mute/reset

• Red: Successful glitch

• Blue: Comments

Success A

Success B

• Glitch A:

• Sharper, shorter, later

• glitch_voltage: 0.558 V

• glitch_length: 721 ns

• glitch_delay: 12744 ns

• Glitch B:

• Shallower, longer, earlier

• glitch_voltage: 1.211 V

• glitch_length: 3944 ns

• glitch_delay: 11199 ns

• Both glitches are successful

30

Some interesting results

A

B

Sharpness vs CPU speed

• ESP32 CPU clock speed: Min 80 MHz → 1 clock cycle = 12.5 ns (or

shorter)

• Successful glitch lengths:

• Minimum: 200ns (16 times max clock cycle duration)

• Maximum: 5000us (400 times max clock cycle duration)

• Our glitches are WAY longer than the duration of a single CPU clock

cycle

31

32

A quite widespread belief is incorrect

We have answers!

• Has a glitch to be sharp in order to affect a single instruction?

• Does a glitch need to be faster than single clock cycle duration?

• Are multiple glitch shapes possible?

• Or are we just constrained to a single shape?

NO

YES

NO

Data analysis.

33

34

Patterns

• An interesting relationship between glitch_voltage and glitch_length:

• Higher the glitch_voltage → longer glitch_length

• Glitches are mostly located along the green/yellow border

• Is there an actual curve profile?

• Very likely, but it doesn’t look great for this specific target

• See the following…

Distribution: glitch_voltage vs glitch_delay

35

• Green: No effect

• Yellow: Garbage output/mute/reset

• Red: Successful glitch

• Dashed blue: Just a marker stroking a “curve”

36

More patterns…

• Another apparent relationship between glitch_voltage and

glitch_delay:

• Higher glitch_voltage → lower glitch_delay (i.e. start glitching earlier)

• Successful glitches seem to align on some kind of curve

37

Is this chip special?

• Not at all.

• Such patterns are common

and they are present for

almost all chips

• See a clearer one on the right

• Yet…they are unknown to the

most.
Yuce et al. - "Fault Attacks on Secure Embedded Software: Threats, Design, and

Evaluation"

* Glitch Voltage plotted as the deviation from normal_voltage

*

https://arxiv.org/pdf/2003.10513
https://arxiv.org/pdf/2003.10513

38

Why?

• They just rarely surface in literature:

• Both in academia and security community works

• Identification requires:

• Varying glitch voltage/length:

• most glitchers out there only glitch to GND

• Data visualization and analysis

• Still rarely used in FI attacks

• some research mostly focuses on getting to success and increasing the success rate

☺

Why do these patterns exist?

• A thorough investigation is still lacking in the public domain:

• To the best of my knowledge ☺

• When reported, they are usually not accompanied by physics

modeling:

• E.g. The paper we got the example pattern from.

39

https://arxiv.org/pdf/2003.10513

40

Are we missing something important?

Current understanding

• Voltage glitches are caused by setup time violations:

• See [1], [2], [3], [4]

• In a nutshell, lower voltages increases propagation time…and wrong

values are sampled

• Totally valid. But it may be challenging to explain the patterns…

• E.g. why does glitch_length matter at?

https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-0https:/www.emse.fr/~dutertre/doc_recherche/P_2012_1_paper11_camera_ready_DCIS2012_timing.pdf1099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://eprint.iacr.org/2010/130.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://perso.telecom-paristech.fr/danger/SE304/dfa_aes_global.pdf

Idea: Energy-based interpretation

• Lowering the voltage deprives the target of energy:

• i.e. we discharge our target over time

• The amount of energy depends on both glitch_voltage and glitch_time

• The internal voltages drop as well

• Below a certain level Vf, representing logical “1” is not possible

anymore.

41

Glitch profile

42

Discharge:

Exponential decay

Glitch starts

Glitch ends

Recharge:

Exponential increase

Implications

• Different glitch shapes are always possible:

• Requirement: internal voltage must drop below Vf at the right time

• It is possible to perform attacks with very shallow and very long

glitches:

• Yes. We have been using them ☺

• This may help bypassing hardware countermeasures (e.g. glitch detector,

brownout detectors,..)

43

Summary

• Widespread beliefs found to be incorrect

• Physics modeling in paper is rare

• Parameter space visualization is rare

• Some interesting patterns and features are:

• Not discussed

• Challenging to explain with the current interpretation

• We may be missing on some fundamental understanding…

• ..as well as some powerful attacks.

44

Sub-optimal modeling.

45

Guess how FI affects code execution…

46

47

“It is as if…we skipped that instruction”

Instruction skipping

• The most common fault model for describing FI effect on CPU

execution:

• Been with us for at least 3 decades ☺

• First attacks mostly targeted security relevant decisions

• Smart Card pin authentication

• Signature checks

• …

Typical attacks

• Targets:

• Conditionals:

• To “skip” the compare instruction

• Function calls:

• To “skip” the execution of a security relevant function

• Infinite loops:

• To “skip” the current instruction an fall into the next one

• This requires precise targeting of specific instructions:

• Strong timing requirements

• Potential targets are easy to predict

48

Example

49

Attack execution

• “Instruction skipping”

requires accurate timing

• Synchronization with target

often required

• Can be executed blindly:

• i.e. no assumption on type

of fault

• “Glitch ‘n pray”

50

SW countermeasures: Multiple checks

• Checks are performed

multiple times

• Assumption:

• A glitch is required for

every check

51

SW countermeasures: Making synchronization harder

• Random delays are

introduced around critical

checks

• Location in time is not

fixed anymore

• Assumption:

• A glitch must “hit” a

specific point in time

52

Observations

• SW-based countermeasures are widely used in the industry and academia

• Multiple checks and random delays are two prominent examples

• Additional countermeasures available

• Commonly advised and implemented in FI-resistant targets

• They reduce attack success rate:

• Multiple glitch required

• Target synchronoziation more difficult

53

But…

54

Instruction skipping is the assumed fault model

Is that true?

55

Test code: Counter (unrolled loop)

Add instruction: adds 1

Macros

Target code

1024 add instructions (Unrolled loop)

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Results

57

Data analysis (1)

Instruction skipping

Something weird…

How do we explain these results

with instruction skipping?

…and weirder…

What are the values in these responses?

61

A memory address? how?

Some hints

62

What could be happening?

Our instruction (+ encoding)

Opcode Op1 (t) Op2 (s) Immediate (r)

Occam’s razor

• Our glitches are most likely corrupting instructions

• This fault model alone is able to explain all the responses we see

• Responses slightly above 0x400 → Immediate corruption

• Responses containing a memory address → Source register corruption

• Responses below 0x400 (i.e. “instruction skipping”)

• Instruction is mutated into one without side effects. E.g: addi.n a8, a8, 0

• Also all the exceptions can be explained!

Weird machines…
out of Data transfers.

64

Instruction corruption

• Glitches may corrupt instructions (examples on ARM32)

• Single bit corruptions

• Multi bit corruptions

• Most chips are affected by this fault model

• Which bits can be controlled, and how, depends on the target, …

• As software is modified; any software security model breaks

add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

ldr x0, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000

• All devices transfer data

• From memory to memory

• Using external interfaces

Data transfers are a great target

Transferred data may be under attacker’s control

USB

UART

ETH

ROM

SRAM

Flash DDR

CPU

GSM RF

Let’s use it as a Fault Injection target…

memcpy()

• It’s everywhere.

• SW security: Parameters are typically checked (dest, src and n)

• Transferred content itself not considered security critical

PC control with Instruction corruption.

68

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32
10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b18078 ldm r1!, {r3, r4, r5, r6, pc}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

PC set to attacker data. Control flow directly hijacked

Example: USB data transfer (ARM32)

Interface

(USB)

Input

buffer

Command

buffer

Command

handler

Output

buffer

Attacker data being transferred

Destination reg modified to PC

We regularly use this technique…

• Escalating privileges from user to kernel in Linux

• R00ting the Unexploitable using Hardware Fault Injection @ BlueHat v17

• Bypassing encrypted secure boot

• Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

• Taking control of an AUTOSAR based ECU

• Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

71

More details here

Works on multiple architectures

• We identified multiple variants and techniques

• Yield arbitrary code execution:

• from controlled data only

• By corrupting instruction destination registers

• Sufficiently generic to work across multiple architectures

• Examples:

• Corrupting stored PC (in regs) or SP

• Hijacking jump/call (through registers)

• Corrupting callee saved regs (across function calls)

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf

Example: ARMv8 RET instruction

• Used for returning from a function call.

• Return address stored in register (default X30)

• It has the following encoding:

• RET instruction can encode any register (x0 to x30)

Real world example

• Google Bionic’s (LIBC) memcpy

• Copying 16 bytes executes the following code:

• Source data resides in x6 and x7

• Source data is not wiped before RET

• Glitch RET instruction into RET x6 or RET x7:

• Equivalently glitch ldr x6, … to ldr x30, …

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

PC hijacked from controlled data.

74

A stack overflow…without SW vulns ☺

“Instruction corruption”: Recipe for success

• Identify data transfers you control

• Send sled of pointers

• E.g. Point to your shellcode location

• Glitch during ANY memcpy

• PC control

Attacking Secure Boot

• Payload loaded at img_addr

• Pointer sled after payload

• Glitch during pointer sled transfer

75

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

SW-based countermeasures bypass

• PC value set to img_addr

• Control flow hijacked

• SW-based countermeasures not executed

76

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

77

Very hard to protect against. Applicable to FI-resistant targets.

Key points

• SW-based countermeasures completely ineffective:

• Countermeasures code not executed

• The attack:

• does NOT target checks. Is unrelated to checks location (weak locality)

• Can target ANY data transfer before SW checks

• ROM control flow hijacked:

• Instruction “skipping” only yields bootloader-level access

Observations

• FI SW countermeasures have been designed with an implicit fault model

assumption

• Comes from a partial/incorrect understanding of FI effects on CPU code

execution

• This leaves room to powerful attacks:

• SW-based countermeasures are mostly ineffective

• Exploit mitigation countermeasures may be applicable

78

PoC: ESP32.

79

PC control → Jump to pointer → Print “Falling…”

Test code: Pointers “sled” copy

• We set a specific pointer in Flash:

• 0x4005a980: ROM code printing “Falling back…”

Repeat 4 times

Copy pointers from Flash to SRAM

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Copy pointers from SRAM to SRAM

81

Our Attack window: ~35.60us

Trigger

Results

82

Conclusion.

83

Final considerations

• Identified some gaps in our approach towards Physics and Computing

• Concrete impact in our understanding of the security of modern digital

systems.

• Mostly due to Physics (+ its modeling and approach) not being part of the

regular Computing discussion.

• WE may be missing on:

• A holistic view of systems security

• Understanding of critical scientific fundamentals

• Understanding of threats

• …and powerful attacks

84

I would like to thank my friend
Niek Timmers!

This talk could have not been possible without his key contribution, to
Raelize, to our research and to the field.

85

Thank you! Any questions!?

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

86

mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

	Default Section
	Slide 1: False Injections: Tales of Physics, Misconceptions and Weird Machines
	Slide 2: Security boundaries
	Slide 3: Notes from Micro-architectural attacks [2017]
	Slide 4: Are we missing anything?
	Slide 5: Walking on thin ice…
	Slide 6: Examples: Natural Phenomena
	Slide 7: Physics and Computing
	Slide 8: Consequences
	Slide 9: Goals
	Slide 10
	Slide 11: Voltage glitch shape.
	Slide 12: Some widespread statements…
	Slide 13: Assumptions?
	Slide 14: Physics has objections…
	Slide 15: In literature: Shaping the Glitch
	Slide 16: Shaping the Glitch: Research aproach
	Slide 17: Still many questions…
	Slide 18: Let’s perform some experiments!
	Slide 19: Target: Espressif ESP32 (D0WDQ6)
	Slide 20: Espressif ESP32 – Power Scheme
	Slide 21: Raelize ESP32 Training Target v1.2
	Slide 22: Generating a voltage glitch: techniques
	Slide 23: Our setup
	Slide 24: In real life…
	Slide 25: Target code: single add instruction
	Slide 26: Attack Window
	Slide 27: Glitch parameters
	Slide 28: FI campaign
	Slide 29: Distribution: glitch_voltage vs glitch_length
	Slide 30: Some interesting results
	Slide 31: Sharpness vs CPU speed
	Slide 32: We have answers!
	Slide 33: Data analysis.
	Slide 34: Patterns
	Slide 35: Distribution: glitch_voltage vs glitch_delay
	Slide 36: More patterns…
	Slide 37: Is this chip special?
	Slide 38: Why?
	Slide 39: Why do these patterns exist?
	Slide 40: Current understanding
	Slide 41: Idea: Energy-based interpretation
	Slide 42: Glitch profile
	Slide 43: Implications
	Slide 44: Summary
	Slide 45: Sub-optimal modeling.
	Slide 46: Guess how FI affects code execution…
	Slide 47: Instruction skipping
	Slide 48: Typical attacks
	Slide 49: Example
	Slide 50: Attack execution
	Slide 51: SW countermeasures: Multiple checks
	Slide 52: SW countermeasures: Making synchronization harder
	Slide 53: Observations
	Slide 54: But…
	Slide 55: Is that true?
	Slide 56: Test code: Counter (unrolled loop)
	Slide 57: Results
	Slide 58: Data analysis (1)
	Slide 59: Something weird…
	Slide 60: …and weirder…
	Slide 61: Some hints
	Slide 62: Our instruction (+ encoding)
	Slide 63: Occam’s razor
	Slide 64: Weird machines… out of Data transfers.
	Slide 65: Instruction corruption
	Slide 66: Data transfers are a great target
	Slide 67: memcpy()
	Slide 68: PC control with Instruction corruption.
	Slide 69: Example: USB data transfer (ARM32)
	Slide 70: We regularly use this technique…
	Slide 71: Works on multiple architectures
	Slide 72: Example: ARMv8 RET instruction
	Slide 73: Real world example
	Slide 74: “Instruction corruption”: Recipe for success
	Slide 75: Attacking Secure Boot
	Slide 76: SW-based countermeasures bypass
	Slide 77: Key points
	Slide 78: Observations
	Slide 79: PoC: ESP32.
	Slide 80: Test code: Pointers “sled” copy
	Slide 81: Trigger
	Slide 82: Results
	Slide 83: Conclusion.
	Slide 84: Final considerations
	Slide 85: I would like to thank my friend Niek Timmers! This talk could have not been possible without his key contribution, to Raelize, to our research and to the field.
	Slide 86: Thank you! Any questions!?

