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Security boundaries

2017:

Microarchitectural

attacks




Notes from Micro-architectural attacks [2017]

* Security models aren’t just a Software (SW) thing

* Most of the Hardware (HW) has no idea of security boundaries:

* unless factored in during design
* HW resources shared across security boundaries can be problematic

* It’s painful to recover
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Walking on thin ice...

* The whole computing model assumes
that:
* the right logical values
* are correctly represented
* at the rising edge

* of each clock cycle.

Tk + Tskew™ Tsetup

* Everywhere

e That's Wh)’ we have constraints on Fig. 1. Internal architecture of digital ICs.
Operqﬁng Cond i'l'ions (e.g. Zussa et al =“Analysis of the fault injection mechanism related to negative and

positive power supply glitches using an on-chip voltmeter” - [ZDRC2014]

temperature range)

What can go wrong?


https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf

Examples: Natural Phenomena

SOlar Energetic Particles
“(Solar Particle Eventsor
Coronal Mass Ejections) '

Alpha decay

Ziegler, Lanford —="*Effects of cosmic rays on computer memories” May, Woods =“Alpha-particle-induced soft errors in dynamic _memories”

(1979) (1979)



https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948

Known (attack) techniques

Electro-magnetic field

Clock

Temperature

Voltage

Iﬂ




Interestingly...

Most of them involve transfer of energy
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Physics and Computing

* The general relationship between Physics and Computing is mostly
unexplored in CS:

* R. P. Feynman — “Feynman Lectures on Computation” — Caltech lectures

* We are aware of “physical attacks”:

* Mostly seen as a computing problem

* More in general, physics fundamentals are just seldomly discussed:
* In academic papers, in the industry, as well as in the security community

* Maybe “left as an exercise to the reader...”?
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Consequences

* Imprecise descriptions
* Perpetuation of beliefs
* Incorrect/sub-optimal modeling

* (Lack of) identification of fundamental problems

How far does the rabbit hole go?¢

11



Goals

* Show examples of gaps in our approaches

* We will be (mostly) using Fault Injection (Fl) for our investigation

* Realize the potential of including physics in our model of computing:

* We will be identifying threats, opportunities and attacks

12



Voltage glitch shape.
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Some widespread statements...

“You want to affect a single instruction...”

“vou have to glitch WHEN the instruction is being executed...”

“CPU is fast. You need to be _very_ fast...”

“Hit within one single clock cycle...”

“Your glitch needs to be sharp...”

14



Assumptions?

* Fault is introduced by the glitch shape

* regardless of target’s physical parameters. (e.g.: Impedance, amount of stored energy, ..

* Glitch effectiveness depends on its shape/sharpness

* Precision depends on sharpness

* To be adjusted to CPU speed

e Glitch is somewhat instantaneous

.)

15



Physics has objections...

e Glitch effect cannot travel faster than

light

* We need to consider two different
times:

* Time of glitch (T )

* Time of fault (T)

Glitch effect cannot be instantaneous

16



In literature: Shaping the Glitch

* Effectiveness of glitch shape has been investigated:

* “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks” - Bozzato et

al

* Confirmed that arbitrarily shaped voltage glitches may be effective

* Tests performed targeting security protections preventing firmware

dump

* No actual analysis of effects on CPU instructions execution

17


https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://tches.iacr.org/index.php/TCHES/article/view/7390/6562
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://tches.iacr.org/index.php/TCHES/article/view/7390/6562

Shaping the Glitch: Research aproach

Activate Inject Glitch Exploit

* Measured parameters shaping vs attack success

* No analysis on the underlying physics mechanisms that causes faults:
* Reference to [ZDRC2014] (discussed later)

18


https://hal-emse.ccsd.cnrs.fr/emse-01099010

Still many questions...

* Has a glitch to be sharp in order to affect a single instruction?

* Does a glitch need to be faster than a single clock cycle?

* Are multiple glitch shapes possible and effective in attackin CPU code
execution?

* Or are we just constrained to a single shape?

...without an answer (yet)

19



Let’s perform some experiments!

20



Target: Espressif ESP32 (DOWDQJ6)

* A feature-rich SoC with integrated Wi-Fi

and Bluetooth connectivity

* Relevant (for us) features:
* Clock speed: 80, 160, 240 MHz
* Nominal voltage: 3.3 V

e CPU architecture: Xtensa




Espressif ESP32 — Power Scheme

VDD3P3_RTC VDD3P3_CPU

We glitch both CPU and
RTC at the same time

VDD_sDIO

SDIO RTC CPU

Domain Domain Domain




Raelize ESP32 Training Target v1.2

* Custom board for easy signal
access during Fl experiments:

* Reset

UART TX/RX

* Trigger
VCC (main power @ 3.3V)

* used for subsystems other than CPU. E.g.

Flash O

* Voltage Glitch (CPU + RTC)




Generating a voltage glitch: techniques

* Original power source is retained:

* Power line is pulled down to GND (“crowbar”)

* Used by common hacking tools

* Original power source is replaced:

* power supplied to the target is fully controlled in the experiment

We are going to use the latter



Our setup

* Riscure Spider:
* FPGA used for

* Glitch generation
* Glitch timing
* Target reset
* Riscure Amplifier:
* More stable glitch

* Espressif ESP-PROG:

e Serial communications

* Powering the main target power

rail (3.3V)

* Source: Riscure website

25



In real life...

ESP-Prog
FPGA

7 T

P

Target

Oscilloscope

Glitch Amplifier

26



Target code: single add instruction

Add instruction: adds 1 to aé

NOP Macros

Trigger (GPIO26): Up

1024 NOPs

Our Target: 1 add instruction

1024 NOPs

Trigger (GPIO26): Down
Print ab. Should be 1 (if not glitched)




' Stopped

Reset DC

Off

gc

=

+5V

L=

Masks

Attack Window

Attack Window

PicoScope 7 T&M Early Access AttackWindow.psdata

Samples Tri er Trigger T W. f ..@
50 ke aqg 0% aveform

Sample rate Simple edge 12
1 GS/s 1V Repeat of 12 Instruments

|

|
(-

|

|

|
+\

|

|

|

|

1024 NOPs Target expected timing 1024 NOPs
(approximate)




Glitch parameters
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FI campaign

* Normal voltage: Fixed. 2.1V

* Glitch delay: Random. Between 10us and 13.2us

* Glitch voltage: Random. Between 0.5V and 2.1V

* Glitch length: Random. Between 200ns and 5000ns
* Experiments: ~270k

* Success: 32 (0.01%)

Data visualization provides valuable information

K10)



Distribution: glitch_voltage vs glitch_length

* Green: No effect . : Successful glitch

* Yellow: Garbage output/mute /reset * Blue: Comments




* Glitch A:
* Sharper, shorter, later
* glitch_voltage: 0.558 V
* glitch_length: 721 ns
* glitch_delay: 12744 ns

* Glitch B:
* Shallower, longer, earlier
* glitch_voltage: 1.211 V
* glitch_length: 3944 ns
* glitch_delay: 11199 ns

* Both glitches are successful

Some interesting results

A
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Sharpness vs CPU speed

* ESP32 CPU clock speed: Min 80 MHz = 1 clock cycle = 12.5 ns (or

shorter)

* Successful glitch lengths:
* Minimum: 200ns (16 times max clock cycle duration)

* Maximum: 5000us (400 times max clock cycle duration)

* QOur glitches are WAY longer than the duration of a single CPU clock

cycle

33



We have answersl!

* Has a glitch to be sharp in order to affect a single instruction? NO
* Does a glitch need to be faster than single clock cycle duration? NO

* Are multiple glitch shapes possible? YES

1€ shape?

A quite widespread belief is incorrect

34



Data analysis.
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Patterns

* An interesting relationship between glitch_voltage and glitch_length:
* Higher the glitch_voltage =2 longer glitch_length

* Glitches are mostly located along the green/yellow border

* Is there an actual curve profile?

* Very likely, but it doesn’t look great for this specific target

* See the following...

36



Distribution: glitch_voltage vs glitch_delay

* Green: No effect : Successful glitch

* Yellow: Garbage output/mute /reset * Dashed blue: Just a marker stroking a “curve”




More patterns...

* Another apparent relationship between glitch_voltage and glitch_delay:
* Higher glitch_voltage 2 lower glitch_delay (i.e. start glitching earlier)

* Successful glitches seem to align on some kind of curve

* The pattern also proves that we are glitching our target: a single add
instruction

* A corruption of the NOP sleds (into an addil) would have created a time-
independent distribution of successes (reds)

38



Is this chip special?

* Not at all.

* Such patterns are common
and they are present for
almost all chips

* See a clearer one on the right

* Yet...they are unknown to the | . 20

Glitch voltage

most.

Yuce et al. - "Fault Attacks on Secure Embedded Software: Threats, Design, and

Evaluation”

* Glitch Voltage plotted as the deviation from normal_voltage

39


https://arxiv.org/pdf/2003.10513
https://arxiv.org/pdf/2003.10513

Why?

* They just rarely surface in literature:

* Both in academia and security community works

* |dentification requires:

* Varying glitch voltage /length:

* most glitchers out there only glitch to GND
* Data visualization and analysis

* Still rarely used in Fl attacks

* some resedrch mostly focuses on getting to success and increasing the success rate

®)

40



Why do these patterns exist?¢

* A thorough investigation is still lacking in the public domain:

* To the best of my knowledge ©

* Whenever reported, they are usually not accompanied by physics
modeling:

* E.g. The paper we got the example pattern from.

41


https://arxiv.org/pdf/2003.10513

Current understanding

* Voltage glitches are caused by setup time violations:

* See [1], [2], [3], [4]

* In a nutshell, lower voltages increases propagation time...and wrong

values are sampled

* Totally valid. But it may be challenging to explain the patterns...

* E.g. why does glitch_length matter at?

Are we missing something important?

42


https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-0https:/www.emse.fr/~dutertre/doc_recherche/P_2012_1_paper11_camera_ready_DCIS2012_timing.pdf1099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://eprint.iacr.org/2010/130.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://perso.telecom-paristech.fr/danger/SE304/dfa_aes_global.pdf

ldea: Energy-based interpretation
* Lowering the voltage deprives the target of energy:

* i.e. we discharge our target over time

* The amount of energy depends on both glitch_voltage and glitch_time

* The internal voltages drop as well

* Below a certain level V,, representing logical “1” is not possible

anymore.

43



Glitch profile

1 2 A
-71.98843 ng3.871975 ps| 3.944 ps

W 2174027V |1.281163V | 8929 mV | o'
253.6 kHz ----

Glitch starts Recharge:
Discharge: Exponential increase

Exponential decay Glitch ends

44



Implications

* Different glitch shapes are always possible:

* Requirement: internal voltage must drop below V, at the right time

* It is possible to perform attacks with very shallow and very long
glitches:
* Yes. We have been using them ©

* This may help bypassing hardware countermeasures (e.g. glitch detector,

brownout detectors,..)

45



Summary

* Widespread beliefs found to be incorrect
* Physics modeling in paper is rare
* Parameter space visualization is rare

* Some interesting patterns and features are:

* Not discussed

* Challenging to explain with the current interpretation
* We may be missing on some fundamental understanding...

* ..as well as some powerful attacks.

46



Modeling faults.

47



A fault propagation model

 E Control Flow,

A
Data Flow | Execution |
Software
Instructions
“Hardware” I
—<

[0
3
S

Logical gates, 5

\

see [2018]: Yuce, Schaumont, Witteman



Notes

e Geared towards faults in software execution:

* Not everything is instructions

* Attack against non-CPU subsystem (i.e. pure hardware implementations) do not
easily fit:
* JTAG
. OTP
* RNGs

* Example:
* Hardwear.io USA 2022 -"Breaking SoC Security by Glitching OTP Data Transfers" [Raelize]

49


https://raelize.com/upload/research/2022/hardwear_io_US2022_-_Breaking_SoC_Security_by_Glitching_OTP_Data_Transfers_v1.0.pdf

 E Control Flow,
Data Flow

Software

Let’s extend it

“Hardware”

OTP, JTAG, CPU,...

Logical gates,
Memory Cells, Flip Flops

Instructions

Root Cause




ALL the faults intfroduced in
a system

Faults that CAN be observed

Faults that ARE being observed

Faults useful for an attack

The observer’s challenge
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Notes

* Describing all the faults actually introduced in a system is possibly
infeasible:

* We need to observe a fault (or its consequences) in order to be able to

acknowledge a fault has occurred

* Still, it may be possible to formally describe fault models geared

toward specific attacks

52



A widespread model (or misconception?) .

53



Guess how Fl affects code execution...

Q4

Home About ¥ CWE List ¥ Mapping ¥ Top-N Li

CWE-1332: Improper Handling of Faults that Lead to Instruction Skips

Weakness ID: 1332
Vulnerability Mapping: ALLOWED
Abstraction: Base

Microelectronics Reliability
Volume 155, April 2024, 115370

Research paper

Software countermeasures against the
multiple instructions skip fault model

Microelectronics Reliability
Volume 121, June 2021, 114133

Experimental analysis of the
electromagnetic instruction skip fault model
and consequences for software
countermeasures

Formal verification of a software countermeasure against instruction
skip attacks
Nicolas Moro!?, Karine Heydemann!, Emmanuelle Encrenaz', and Bruno Robisson?
!Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, 75005 Paris, France
firstname.lastname@lip6.fr

2CEA, CEA-Tech PACA, LSAS, 13541 Gardanne, France
firstname.lastname@cea.fr

February 24, 2014
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Instruction skipping

* The most common fault model for describing Fl effect on CPU
execution:

* Been with us for at least 3 decades ©

* First attacks mostly targeted security relevant decisions
* Smart Card pin authentication

* Signature checks

“It is as if...we skipped that instruction”

55



Typical attacks

* Targets:
* Conditionals:
* To “skip” the compare instruction
* Function calls:
* To “skip” the execution of a security relevant function

* Infinite loops:

* To “skip” the current instruction an fall into the next one

* This requires precise targeting of specific instructions:

* Strong timing requirements

* Potential targets are easy to predict

56



loc_DR34
LDR

Example

R6, [R6,R10]

R11, R6, #HOx1000
RO, R8 s

R1, R11 s2
strcmp

RO, #O

loc _DAS8S
ADD R11, R11, #Ox28
STR R6, [R4,#06x110]

57



Notes

* “Instruction skipping” models fault at the instruction execution level

* The original program continues to be executed

* We just take an unintended branch in a decision

* Hard to jump at arbitrary locations

58



Attack execution

* “Instruction skipping”

requires accurate timing

* Can be executed
blindly:
* i.e. no assumption on
type of fault

* “Glitch ‘n pray”

59



SW countermeasures: Multiple checks

* Attack assumption:

* A glitch is required for

every check

* One instruction, one

glitch

* Mitigation: Perform

multiple checks

60



SW countermeasures: Making synchronization harder

int load exec next boot stage() {

// Destination addresses in SRAM
uint32 t img _addr = Oxd0000000;

uint32 t sig_addr = 0xd1000000; ® A1'1'c|ck qssumpﬁon:

// Copy next stage image from Flash to SRAM

load next stage img(img addr); o A glifch must “hit” that
// Copy signature from Flash to SRAWM . . ofe

load next stage signature(sig addr); Instruction at a SpeCIfIC
random_delay(); poin’r in fime

if (verify signature(img addr, s5ig addr)) {
reset SOC();

}
random delay();
if (verify signature(img _addr;, sig addr)) { o Mitigqlﬁon:
reset SOC();
}
°
- Random delays are
if (verify signature(img addr, sig addr)) { infroduced around
reset SOC();
L critical checks

random delay();

// Signature valid. Exec next stage code
exec stage(img_addr);

61



Observations

* SW-based countermeasures are widely used in the industry and academia
* Multiple checks and random delays are two prominent examples
* Additional countermeasures available

* Example: Riscure whitepaper

* Commonly advised and implemented in Fl-resistant targets

* They reduce attack success rate:
* Multiple glitch required

* Target synchronization more difficult

62


https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf

A few common beliefs

e “Software is vulnerable to FI”:

* Wrong. Hardware is.

* Source code reviews for fault injections are considered a proper tool
for spotting “Fl vulnerabilities”:

* We will understand why that is not the case, shortly

63



Untold assumption

Instruction skipping is the relevant fault model

64



Is that true?
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Test code: Counter (unrolled loop)

Add instruction: adds 1

Macros

Trigger (GPIO26): Up

Target code
1024 add instructions (Unrolled loop)

Trigger (GPIO26): Down




Results

Classification (6,843)
® FExpected (3004/43.9% )
Mute/Reset (3497 /51.1% )
® fExceptions (298/4.4% )
® Success(44/0.6%)

delay (ns)




Data analysis (1)

AMOUNT COLOR DELAYMIN DELAYMAX <LENGTHMIN <LENGTHMAX “RESPONSE
11 R 1690 1850 2815 4331  |XXXX000003ffYYYY000003ffZZZZ
5 R 1191 1233 2931 4218  |XXXX3ffe41l7aYYYY3ffedl7azzzz
4 R 1735 1790 3098 3853  |XXXX3ffed4ldeYYYY3ffedldezzzZ
4 R 1012 1391 2972 3811  |XXXX000003feYYYY000003fezzZZ
3 R 1435 1844 2975 4077  |XXXX00000401YYYY000004012ZZZ
3 R 1471 1475 3946 4211  |XXXX00000407YYYY000004072ZZZ
2 R 1461 1472 3392 3817 |XXXX00000408YYYY000004082ZZZ
2 R 1065 1092 3170 3559  |XXXX800812edYYYY800812edZZZZ

Instruction skipping



Something weird...

AMOUNT COLOR DELAYMIN < DELAYMAX <LENGTHMIN <LENGTHMAX <RESPONSE
11 R 1090 1850 2815 4331 XXXX000003ffYYYYOQ00003ffZZZZ
5 R 1191 1233 2931 4218 XXXX3ffedl7aYYYY3ffedl7aZZZ7Z
4 R 1735 1790 3098 3853 XXXX3ffedldeYYYY3ffedldezZZZ7
4 R 1012 1391 2972 3811 XXXX000003feYYYYO00003feZZZZ
3 R 1435 1844 2975 4077 XXXX00000401YYYY00000401ZZZZ
3 R 1471 1475 3946 4211 XXXX00000407YYYYO0000407ZZZ27
P R 1461 1472 3392 3817 XXXX00000408YYYYO0000408Z2Z727
P R 1065 1092 3170 3559 XXXX800812edYYYY800812edZZZ7Z

A

How do we explain these results
with instruction skipping?



...and weirder...

AMOUNT COLOR DELAYMIN < DELAYMAX <LENGTHMIN <LENGTHMAX <RESPONSE
11 R 1090 1850 2815 4331 XXXX000003ffYYYYOQ00003ffZZZZ
5 R 1191 1233 2931 4218 XXXX3ffe4l7aYYYY3ffed4l7azZZZ
4 R 1735 1790 3098 3853 XXXX3ffed41l4eYYYY3ffedldeZZZZ
4 R 1012 1391 2972 3811 XXXX000003feYYYYO00003feZZZZ
3 R 1435 1844 2975 4077 XXXX00000401YYYY00000401ZZZZ
3 R 1471 1475 3946 4211 XXXX00000407YYYYO0000407ZZZZ
P R 1461 1472 3392 3817 XXXX00000408YYYY00000408Z272727
P R 1065 1092 3170 3559 XXXX800812edYYYY800812edZZZ7Z

T

What are the values in these responses?



Some hints

Table 1-2. Embedded Memory Address Mapping

Bus Type Boundary Address Size Target Comment
P Low Address High Address .

Data OXSFFB_OOOO Ox3FF8_1FFF 8 KB RTC FAST Memory PRO CPU Only

By L T L I R a—
Dae | OcPr oo | ocrRarr | oiKe | memaromi -
 [OoPAOM | OGRADHT | 5oKB | Fesened |-

Data Ox3FFE 0000 | OX3FFF FFFF 128 KB |[Internal SRAM 1

A memory address?¢ how?
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Our instruction (+ encoding)

addi.n @8], a 1t

i \

Opcode Opl (1) Op2 ( Immediate ( r)

What could be happening?

72



Occam’s razor

* Our glitches are most likely corrupting instructions

* This fault model alone is able to explain all the responses we see
* Responses slightly above 0x400 = Immediate corruption
* Responses containing a memory address = Source register corruption

* Responses below 0x400 (i.e. “instruction skipping”)

* Instruction is mutated into one without side effects. E.g: addi.n a8, a8, 0

* Also all the exceptions can be explained!



Instruction fetch / Bus transfers?

Some studies suggest instruction corruption may occur during the fetch phase of an instruction

Or, more specifically, in the transfer from memory to CPU over busses

This seem to apply to multiple techniques (e.g. Voltage and EM)

Some relevant work:

Microcontrollers: “Building fault models for microcontrollers’ — A. Spruyt [201 2] - Voltage Fault Injection
g |

ARM Cortex M: Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller [2014] —
EMFI

ARM Cortex A8 (1 Ghz): Exploring Effects of Electromagnetic Fault Injection on a 32-bit High Speed
Embedded Device Microprocessor - T. Hummel [2014] - EMFI

* This research shows a strong time-dependence for affecting specific registers of an instruction

ARM Cortex A72 (1.5 — 1.8 Ghz): Faults in Our Bus: Novel Bus Fault Attack to Break ARM TrustZone — Mishra
et al. [2024] - EMFI
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https://www.os3.nl/_media/2011-2012/courses/rp2/p61_report.pdf
https://arxiv.org/pdf/1402.6421
https://essay.utwente.nl/65596/1/Hummel_ComputerScienceMsc_EECMS.pdf
https://essay.utwente.nl/65596/1/Hummel_ComputerScienceMsc_EECMS.pdf
https://www.ndss-symposium.org/wp-content/uploads/2024-499-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2024-499-paper.pdf

Weird machines...
out of Data transfers.
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Arbitrary code execution (ARM32)

Controlling PC on ARM using Fault Injection

Niek Timmers Albert Spruyt Marc Witteman
Riscure — Security Lab Riscure — Security Lab Riscure — Security Lab

* QOur research (2016) is the first (or one of?) leveraging the instruction corruption fault

model for actual attacks:

* Note: the idea of Fl corrupting instructions may have been previously hinted in others’ research
and discussion

* Introduces powerful attack: PC control on AArch32


https://ieeexplore.ieee.org/document/7774479

Instruction corruption

* Glitches may corrupt instructions (examples on ARM32)

* Single bit corruptions add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

* Multi bit corruptions

1111001010000000001001111100000
1111001000000000001000000000000

ldr x0, [sp, #32
str x0, [x0, #32

] =1
] =1

* Most chips are affected by this fault model

* Which bits can be controlled, and how, depends on the target, ...

* As software is modified; any software security model breaks



Data transfers are a great target

e All devices transfer data

* From memory to memory

* Using external interfaces

Transferred data may be under attacker’s control



memcpy()

* It's everywhere.

* SW security: Parameters are typically checked (dest, src and n)

* Transferred content itself not considered security critical

Let’s use it as a Fault Injection target...



PC control with Instruction corruption (ARM32).
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Example: USB data transfer (ARM32)

Destination reg modified to PC
0000000 <memcpy>:

0: €92de070 push {r4, r5, r6}

00000004 <loop>:
: e8b18078 1ldm ri1!, {r3, r4, r5, r6, pc}
: €e8a0RO78 stm ro!, {r3, r4,
: 2522020 subs r2, r2, #32
: aafffffb  bge 4 <ldmloop>

: e8bde070 pop {r4, r5, ré6}
Attacker datth being transferred : e12fffle bx 1r

PC set to attacker data. Control flow directly hijacked



We regularly use this technique...

[2016]: Bypassing Secure Boot (non-encrypted)

* Bypassing Secure Boot using Fault Injection (@ BlackHat EU 2016

[2017]: Escalating privileges from user to kernel in Linux

* Escalating Privileges in Linux Using Voltage Fault Injection (@ FDTC 2017 (academic paper)

* ROOting the Unexploitable using Hardware Fault Injection @ BlueHat v17

[2019]: Bypassing encrypted secure boot
* Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

[2019]: Taking control of an AUTOSAR based ECU
*  Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019



https://raelize.com/upload/research/2016/2016_BlackHat-EU_Bypassing-Secure-Boot-Using-Fault-Injection_NT-AS.pdf
https://ieeexplore.ieee.org/document/8167704
https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

...as of today ©

* [2019]: Generalizing the technique to (all2) other architectures

* Using Fault Injection to Turn Data Transfers into Arbitrary Execution (@ PoC 2019

* [2020]: Bypassed an encrypted Secure Boot (data transfers over DMA) leveraging SRAM persistence

* Look mum, no key! Bypassing Encrypted Secure Boot @ hardwear.io 2020

* [2024]: Bypassing encrypted secure boot:
* using attacker-derived data (and not directly controlled)
* Manipulating ciphertext to force plaintext’s CRC32 to a controlled value
* Getting PC control by glitching a single instruction

* Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection (@ Usenix WOOT'24
(academic paper)



https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf
https://www.youtube.com/watch?v=VLIWdJuHgz0
https://raelize.com/upload/research/2024/woot24-delvaux.pdf

Works on multiple architectures

* We identified multiple variants and techniques

* Yield arbitrary code execution:
* from controlled data only

* By corrupting instruction destination registers
* Sufficiently generic to work across multiple architectures

* Examples:
* Corrupting stored PC (in regs) or SP
* Hijacking jump /call (through registers)

* Corrupting callee saved regs (across function calls)

More details here
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Example: ARMv8 RET instruction

* Used for returning from a function call.

* Return address stored in register (default X30)

[31 30 29 28|27 26 25 24/23 22 21 20/19 18 17 16|15 14 13 12|11 1§

* It has the following encoding: [ 10101 tfofo[r o] 71+ [oooofo[d] Rx oo 00

A

* RET instruction can encode any register (x0 to x30)



Real world example

* Google Bionic’s (LIBC) memcpy

* Copying 16 bytes executes the following code:

memcpy :
0:8b020024
* Source data resides in x6 and x7 4.8b020005
8:1100405f
* Source data is not wiped before RET ©:54000225
50:1100205f
54:540000e3
58:19400026

5c:¥85f8087

68:d65f03c0

e Glitch RET instruction into RET xé or RET x7: e [PHRISENE

* Equivalently glitch Idr x6, ... to Idr x30, ...

PC hijacked from controlled data.

add x4, x1, x2
add x5, x@, x2
cmp X2, #0x10
b.1s50 <memcpy+0x50

cmp X2, #0x8

b.cc70 <memcpy+0x70>
ldr x6, [x1]

ldurx7, [x4, #-8]
str x6, [x0]

sturx7, [x5, #-8]
ret



“Instruction corruption”: Recipe for success

* |dentify data transfers you control

* Send sled of pointers

* E.g. Point to your shellcode location
* Glitch during ANY memcpy

* PC control

A stack overflow...without SW vulns ©
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Attacking Secure Boot

int load exec next boot stage() {

// Destination addresses in SRAM Flash
uint32 t img_addr = 0xd000O00O00;

uint32 t sig M
// Copy next¥%Tag ge from Flash to SR

load next stage img(img_addr);

// Copy signature from Flash to SRAM
load next stage signature(sig_addr);

random delay();

if (verify signature(img_addr, sig_addr)) {
reset SOC();
I

random delay();

pointers sled

(img_addr)

if (verify signature(img_addr, sig_addr)) {
reset SOC();
}

random delay();
if (verify signature(img_addr, sig addr)) {

reset SOC();
g

random delay();

* Payload loaded at img_addr
* Pointer sled after payload

// Signature valid. Exec next stage code * Glitch during pointer sled transfer

exec stage(img_addr);
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SW-based countermeasures bypass

1 [int load exec next boot stage() {

p

// Destination addresses in SRAM Flash
uint32 t img addr = 0xd0OOOEEO;

uint32 t siw
// Copy nex a age from Flash to S

load next stage img(img_addr);

*img addr();

pointers sled

(img_addr)

* PC value set to img_addr
* Control flow hijacked

* SW-based countermeasures not executed
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Key points

* SW-based countermeasures completely ineffective:

e Countermeasures code not executed

* The attack:

* does NOT target checks. Is unrelated to checks location (weak locality)

* Can target ANY data transfer before SW checks

* ROM control flow hijacked:

* Instruction “skipping” only yields bootloader-level access

Very hard to protect against. Applicable to Fl-resistant targets.
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Observations

* FI SW countermeasures have been designed with an implicit fault model

assumption

* Comes from a partial /incorrect understanding of Fl effects on CPU code

execution

* This leaves room to powerful attacks:

* SW-based countermeasures are mostly ineffective

* Exploit mitigation countermeasures may be applicable
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PoC: ESP32.
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Test code: Pointers “sled” copy

* We set a specific pointer in Flash:

* 0x40050980: ROM code printing “Falling back...”
GPIO OUTPUT SET(26,1); <« Trigger (GPIO26): Up

[memcpy (buffer A, (uint32 t *)(0x3f400000 + 0x100), sizeof(buffer A));
[memcpy (buffer B, buffer A, sizeof(buffer B));
memcpy (buffer A, (uint32 t *)(0x3f400000 + 0x100), sizeof(buffer A)); .
memcpy (buffer B, buffer A, sizeof(buffer B)): Copy pointers from SRAM to SRAM
memcpy (buffer A, (uint32 t *)(0x3f400000 + 0x100), sizeof(buffer A));
memcpy (buffer B, buffer A, sizeof(buffer B));
memcpy (buffer A, (uint32 t *)(0x3f400000 + 0x100), sizeof(buffer A));
memcpy (buffer B, buffer A, sizeof(buffer B));

Copy pointers from Flash to SRAM

A

Repeat 4 times

GPIO OUTPUT SET(26,0); < Trigger (GPIO26): Down

esp rom printf("AAAA%O8xBBBB%08xCCCC\r\n", *(uint32 t*)(buffer A), *(uint32 t*)(buffer B));

PC control = Jump to pointer = Print “Falling...”



Trigger

Our Attack window: ~35.60us
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Results

Classification (6,843)
® FExpected (3004/43.9% )
Mute/Reset (3497 /51.1% )
® fExceptions (298/4.4% )
® Success(44/0.6%)

delay (ns)




Conclusion.
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Final considerations

* |dentified some gaps in our approach towards Physics and Computing

* Concrete impact in our understanding of the security of modern digital
systems.

* Mostly due to Physics (+ its modeling and approach) not being part of the
regular Computing discussion.

* WE may be missing on:
* A holistic view of systems security
* Understanding of critical scientific fundamentals
* Understanding of threats

* ...and powerful attacks
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Thank you! Any questions!?

Cristofaro Mune
cristofaro@raelize.com

(@pulsoid
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