
False Injections:
Tales of Physics, Misconceptions and Weird Machines

1

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

Hardware

Security boundaries

Kernel
App

Userspace

AppApp

VM

HypervisorKernel
App

Userspace

AppApp

VM

Kernel
App

Userspace

AppApp

VM

TEE

“Microarchitecture”
2017:

Microarchitectural

attacks

3

Notes from Micro-architectural attacks [2017]

• Security models aren’t just a Software (SW) thing

• Most of the Hardware (HW) has no idea of security boundaries:

• unless factored in during design

• HW resources shared across security boundaries can be problematic

• It’s painful to recover

Hardware

Are we missing anything?

Kernel
App

Userspace

AppApp

VM

HypervisorKernel
App

Userspace

AppApp

VM

Kernel
App

Userspace

AppApp

VM

TEE

“Microarchitecture”

Physics

5

What can go wrong?

Walking on thin ice…

• The whole computing model assumes

that:

• the right logical values

• are correctly represented

• at the rising edge

• of each clock cycle.

• Everywhere

• That’s why we have constraints on

operating conditions (e.g.

temperature range)

Zussa et al –“Analysis of the fault injection mechanism related to negative and

positive power supply glitches using an on-chip voltmeter” - [ZDRC2014]

https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf

6

Examples: Natural Phenomena

Ziegler, Lanford –“Effects of cosmic rays on computer memories”

(1979)

May, Woods –“Alpha-particle-induced soft errors in dynamic memories”

(1979)

https://www.science.org/doi/10.1126/science.206.4420.776
https://ieeexplore.ieee.org/document/1479948

Known (attack) techniques

3.3 V

Time

4.0 V

1.0 V

Clock

Time

Voltage

Clock

Temperature

Electro-magnetic field

Laser (“Nexus-6” kitten)

8

Most of them involve transfer of energy

Interestingly…

Fault Injection Reference Model (FIRM)

9

Hardware
Vulnerability

Inject
(Attack technique)

Activate Glitch
(Parameters)

Fault
(Fault Model)

Exploit Goal

Physics
manipulation

Digital Logic/Computational
effects

10

Physics and Computing

• The general relationship between Physics and Computing is mostly

unexplored in CS:

• R. P. Feynman – “Feynman Lectures on Computation” – Caltech lectures

• We are aware of “physical attacks”:

• Mostly seen as a computing problem

• More in general, physics fundamentals are just seldomly discussed:

• In academic papers, in the industry, as well as in the security community

• Maybe “left as an exercise to the reader…”?

11

How far does the rabbit hole go?

Consequences

• Imprecise descriptions

• Perpetuation of beliefs

• Incorrect/sub-optimal modeling

• (Lack of) identification of fundamental problems

Goals

• Show examples of gaps in our approaches

• We will be (mostly) using Fault Injection (FI) for our investigation

• Realize the potential of including physics in our model of computing:

• We will be identifying threats, opportunities and attacks

12

Voltage glitch shape.

13

Some widespread statements…

14

“Your glitch needs to be sharp…”

“You want to affect a single instruction…”

“CPU is fast. You need to be _very_ fast…”

“Hit within one single clock cycle…”

“you have to glitch WHEN the instruction is being executed…”

Assumptions?

• Fault is introduced by the glitch shape

• regardless of target’s physical parameters. (e.g.: Impedance, amount of stored energy, …)

• Glitch effectiveness depends on its shape/sharpness

• Precision depends on sharpness

• To be adjusted to CPU speed

• Glitch is somewhat instantaneous

15

16

Glitch effect cannot be instantaneous

Physics has objections…

• Glitch effect cannot travel faster than

light

• We need to consider two different

times:

• Time of glitch (Tg)

• Time of fault (Tf)

~3mm

In literature: Shaping the Glitch

• Effectiveness of glitch shape has been investigated:

• “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks” - Bozzato et

al

• Confirmed that arbitrarily shaped voltage glitches may be effective

• Tests performed targeting security protections preventing firmware

dump

• No actual analysis of effects on CPU instructions execution

17

https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://tches.iacr.org/index.php/TCHES/article/view/7390/6562
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://tches.iacr.org/index.php/TCHES/article/view/7390/6562

Shaping the Glitch: Research aproach

• Measured parameters shaping vs attack success

• No analysis on the underlying physics mechanisms that causes faults:

• Reference to [ZDRC2014] (discussed later)

18

?

https://hal-emse.ccsd.cnrs.fr/emse-01099010

19

…without an answer (yet)

Still many questions…

• Has a glitch to be sharp in order to affect a single instruction?

• Does a glitch need to be faster than a single clock cycle?

• Are multiple glitch shapes possible and effective in attackin CPU code

execution?

• Or are we just constrained to a single shape?

Let’s perform some experiments!

20

Target: Espressif ESP32 (D0WDQ6)

• A feature-rich SoC with integrated Wi-Fi

and Bluetooth connectivity

• Relevant (for us) features:

• Clock speed: 80, 160, 240 MHz

• Nominal voltage: 3.3 V

• CPU architecture: Xtensa

Espressif ESP32 – Power Scheme

We glitch both CPU and

RTC at the same time

Raelize ESP32 Training Target v1.2

• Custom board for easy signal

access during FI experiments:

• Reset

• UART TX/RX

• Trigger

• VCC (main power @ 3.3V)

• used for subsystems other than CPU. E.g.

Flash

• Voltage Glitch (CPU + RTC)

We are going to use the latter

Generating a voltage glitch: techniques

• Original power source is retained:

• Power line is pulled down to GND (“crowbar”)

• Used by common hacking tools

• Original power source is replaced:

• power supplied to the target is fully controlled in the experiment

Our setup

• Riscure Spider:

• FPGA used for

• Glitch generation

• Glitch timing

• Target reset

• Riscure Amplifier:

• More stable glitch

• Espressif ESP-PROG:

• Serial communications

• Powering the main target power

rail (3.3V)

25

* Source: Riscure website

*

*

In real life…

26

Oscilloscope

FPGA

ESP-Prog

Glitch Amplifier

Target

Target code: single add instruction

Add instruction: adds 1 to a6

NOP Macros

1024 NOPs

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Our Target: 1 add instruction

Print a6. Should be 1 (if not glitched)

1024 NOPs

Attack Window

28
1024 NOPs 1024 NOPsTarget expected timing

(approximate)

Attack Window

Glitch parameters

29

glitch_delay (ns)

glitch_voltage (Volts)

normal_voltage (Volts)

glitch_length (ns)

30

Data visualization provides valuable information

FI campaign

• Normal voltage: Fixed. 2.1V

• Glitch delay: Random. Between 10us and 13.2us

• Glitch voltage: Random. Between 0.5V and 2.1V

• Glitch length: Random. Between 200ns and 5000ns

• Experiments: ~270k

• Success: 32 (0.01%)

Distribution: glitch_voltage vs glitch_length

31

• Green: No effect

• Yellow: Garbage output/mute/reset

• Red: Successful glitch

• Blue: Comments

Success A

Success B

• Glitch A:

• Sharper, shorter, later

• glitch_voltage: 0.558 V

• glitch_length: 721 ns

• glitch_delay: 12744 ns

• Glitch B:

• Shallower, longer, earlier

• glitch_voltage: 1.211 V

• glitch_length: 3944 ns

• glitch_delay: 11199 ns

• Both glitches are successful

32

Some interesting results

A

B

Sharpness vs CPU speed

• ESP32 CPU clock speed: Min 80 MHz → 1 clock cycle = 12.5 ns (or

shorter)

• Successful glitch lengths:

• Minimum: 200ns (16 times max clock cycle duration)

• Maximum: 5000us (400 times max clock cycle duration)

• Our glitches are WAY longer than the duration of a single CPU clock

cycle

33

34

A quite widespread belief is incorrect

We have answers!

• Has a glitch to be sharp in order to affect a single instruction?

• Does a glitch need to be faster than single clock cycle duration?

• Are multiple glitch shapes possible?

• Or are we just constrained to a single shape?

NO

YES

NO

Data analysis.

35

36

Patterns

• An interesting relationship between glitch_voltage and glitch_length:

• Higher the glitch_voltage → longer glitch_length

• Glitches are mostly located along the green/yellow border

• Is there an actual curve profile?

• Very likely, but it doesn’t look great for this specific target

• See the following…

Distribution: glitch_voltage vs glitch_delay

37

• Green: No effect

• Yellow: Garbage output/mute/reset

• Red: Successful glitch

• Dashed blue: Just a marker stroking a “curve”

38

More patterns…

• Another apparent relationship between glitch_voltage and glitch_delay:

• Higher glitch_voltage → lower glitch_delay (i.e. start glitching earlier)

• Successful glitches seem to align on some kind of curve

• The pattern also proves that we are glitching our target: a single add

instruction

• A corruption of the NOP sleds (into an addi1) would have created a time-

independent distribution of successes (reds)

39

Is this chip special?

• Not at all.

• Such patterns are common

and they are present for

almost all chips

• See a clearer one on the right

• Yet…they are unknown to the

most.
Yuce et al. - "Fault Attacks on Secure Embedded Software: Threats, Design, and

Evaluation"

* Glitch Voltage plotted as the deviation from normal_voltage

*

https://arxiv.org/pdf/2003.10513
https://arxiv.org/pdf/2003.10513

40

Why?

• They just rarely surface in literature:

• Both in academia and security community works

• Identification requires:

• Varying glitch voltage/length:

• most glitchers out there only glitch to GND

• Data visualization and analysis

• Still rarely used in FI attacks

• some research mostly focuses on getting to success and increasing the success rate

☺

Why do these patterns exist?

• A thorough investigation is still lacking in the public domain:

• To the best of my knowledge ☺

• Whenever reported, they are usually not accompanied by physics

modeling:

• E.g. The paper we got the example pattern from.

41

https://arxiv.org/pdf/2003.10513

42

Are we missing something important?

Current understanding

• Voltage glitches are caused by setup time violations:

• See [1], [2], [3], [4]

• In a nutshell, lower voltages increases propagation time…and wrong

values are sampled

• Totally valid. But it may be challenging to explain the patterns…

• E.g. why does glitch_length matter at?

https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-0https:/www.emse.fr/~dutertre/doc_recherche/P_2012_1_paper11_camera_ready_DCIS2012_timing.pdf1099010v1/file/hal_HOST_2014_voltmeter.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://eprint.iacr.org/2010/130.pdf
https://hal-emse.ccsd.cnrs.fr/emse-01099010v1/file/hal_HOST_2014_voltmeter.pdf
https://perso.telecom-paristech.fr/danger/SE304/dfa_aes_global.pdf

Idea: Energy-based interpretation

• Lowering the voltage deprives the target of energy:

• i.e. we discharge our target over time

• The amount of energy depends on both glitch_voltage and glitch_time

• The internal voltages drop as well

• Below a certain level Vf, representing logical “1” is not possible

anymore.

43

Glitch profile

44

Discharge:

Exponential decay

Glitch starts

Glitch ends

Recharge:

Exponential increase

Implications

• Different glitch shapes are always possible:

• Requirement: internal voltage must drop below Vf at the right time

• It is possible to perform attacks with very shallow and very long

glitches:

• Yes. We have been using them ☺

• This may help bypassing hardware countermeasures (e.g. glitch detector,

brownout detectors,..)

45

Summary

• Widespread beliefs found to be incorrect

• Physics modeling in paper is rare

• Parameter space visualization is rare

• Some interesting patterns and features are:

• Not discussed

• Challenging to explain with the current interpretation

• We may be missing on some fundamental understanding…

• ..as well as some powerful attacks.

46

Modeling faults.

47

A fault propagation model

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

R
o
o
t
C

a
us

e

see [2018]: Yuce, Schaumont, Witteman

Notes

• Geared towards faults in software execution:

• Not everything is instructions

• Attack against non-CPU subsystem (i.e. pure hardware implementations) do not

easily fit:

• JTAG

• OTP

• RNGs

• …

• Example:

• Hardwear.io USA 2022 -"Breaking SoC Security by Glitching OTP Data Transfers" [Raelize]

49

https://raelize.com/upload/research/2022/hardwear_io_US2022_-_Breaking_SoC_Security_by_Glitching_OTP_Data_Transfers_v1.0.pdf

Let’s extend it

Fault

Physical

Circuit

Micro-Architecture

Software

“Hardware”

Logical gates,

Memory Cells, Flip Flops

Execution
Control Flow,

Data Flow

Instructions

R
o
o
t
C

a
us

e

SubsystemOTP, JTAG, CPU,…

The observer’s challenge

51

ALL the faults introduced in

a system

Faults that CAN be observed

Faults that ARE being observed

Faults useful for an attack

Notes

• Describing all the faults actually introduced in a system is possibly

infeasible:

• We need to observe a fault (or its consequences) in order to be able to

acknowledge a fault has occurred

• Still, it may be possible to formally describe fault models geared

toward specific attacks

52

A widespread model (or misconception?) .

53

Guess how FI affects code execution…

54

55

“It is as if…we skipped that instruction”

Instruction skipping

• The most common fault model for describing FI effect on CPU

execution:

• Been with us for at least 3 decades ☺

• First attacks mostly targeted security relevant decisions

• Smart Card pin authentication

• Signature checks

• …

Typical attacks

• Targets:

• Conditionals:

• To “skip” the compare instruction

• Function calls:

• To “skip” the execution of a security relevant function

• Infinite loops:

• To “skip” the current instruction an fall into the next one

• This requires precise targeting of specific instructions:

• Strong timing requirements

• Potential targets are easy to predict

56

Example

57

Notes

• “Instruction skipping” models fault at the instruction execution level

• The original program continues to be executed

• We just take an unintended branch in a decision

• Hard to jump at arbitrary locations

58

Attack execution

• “Instruction skipping”

requires accurate timing

• Can be executed

blindly:

• i.e. no assumption on

type of fault

• “Glitch ‘n pray”

59

SW countermeasures: Multiple checks

• Attack assumption:

• A glitch is required for

every check

• One instruction, one

glitch

• Mitigation: Perform

multiple checks

60

SW countermeasures: Making synchronization harder

• Attack assumption:

• A glitch must “hit” that

instruction at a specific

point in time

• Mitigation:

• Random delays are

introduced around

critical checks

61

Observations

• SW-based countermeasures are widely used in the industry and academia

• Multiple checks and random delays are two prominent examples

• Additional countermeasures available

• Example: Riscure whitepaper

• Commonly advised and implemented in FI-resistant targets

• They reduce attack success rate:

• Multiple glitch required

• Target synchronization more difficult

62

https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf

A few common beliefs

• “Software is vulnerable to FI”:

• Wrong. Hardware is.

• Source code reviews for fault injections are considered a proper tool

for spotting “FI vulnerabilities”:

• We will understand why that is not the case, shortly

63

Untold assumption

64

Instruction skipping is the relevant fault model

Is that true?

65

Test code: Counter (unrolled loop)

Add instruction: adds 1

Macros

Target code

1024 add instructions (Unrolled loop)

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Results

67

Data analysis (1)

Instruction skipping

Something weird…

How do we explain these results

with instruction skipping?

…and weirder…

What are the values in these responses?

71

A memory address? how?

Some hints

72

What could be happening?

Our instruction (+ encoding)

Opcode Op1 (t) Op2 (s) Immediate (r)

Occam’s razor

• Our glitches are most likely corrupting instructions

• This fault model alone is able to explain all the responses we see

• Responses slightly above 0x400 → Immediate corruption

• Responses containing a memory address → Source register corruption

• Responses below 0x400 (i.e. “instruction skipping”)

• Instruction is mutated into one without side effects. E.g: addi.n a8, a8, 0

• Also all the exceptions can be explained!

Instruction fetch / Bus transfers?

• Some studies suggest instruction corruption may occur during the fetch phase of an instruction

• Or, more specifically, in the transfer from memory to CPU over busses

• This seem to apply to multiple techniques (e.g. Voltage and EM)

• Some relevant work:

• Microcontrollers: “Building fault models for microcontrollers” – A. Spruyt [2012] - Voltage Fault Injection

• ARM Cortex M: Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller [2014] –

EMFI

• ARM Cortex A8 (1 Ghz): Exploring Effects of Electromagnetic Fault Injection on a 32-bit High Speed

Embedded Device Microprocessor - T. Hummel [2014] - EMFI

• This research shows a strong time-dependence for affecting specific registers of an instruction

• ARM Cortex A72 (1.5 – 1.8 Ghz): Faults in Our Bus: Novel Bus Fault Attack to Break ARM TrustZone – Mishra

et al. [2024] - EMFI

74

https://www.os3.nl/_media/2011-2012/courses/rp2/p61_report.pdf
https://arxiv.org/pdf/1402.6421
https://essay.utwente.nl/65596/1/Hummel_ComputerScienceMsc_EECMS.pdf
https://essay.utwente.nl/65596/1/Hummel_ComputerScienceMsc_EECMS.pdf
https://www.ndss-symposium.org/wp-content/uploads/2024-499-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2024-499-paper.pdf

Weird machines…
out of Data transfers.

75

Arbitrary code execution (ARM32)

• Our research (2016) is the first (or one of?) leveraging the instruction corruption fault

model for actual attacks:

• Note: the idea of FI corrupting instructions may have been previously hinted in others’ research

and discussion

• Introduces powerful attack: PC control on AArch32

https://ieeexplore.ieee.org/document/7774479

Instruction corruption

• Glitches may corrupt instructions (examples on ARM32)

• Single bit corruptions

• Multi bit corruptions

• Most chips are affected by this fault model

• Which bits can be controlled, and how, depends on the target, …

• As software is modified; any software security model breaks

add x0, x1, x3 = 10001011000000110000000000100000
add x0, x1, x2 = 10001011000000100000000000100000

ldr x0, [sp, #32] = 11111001010000000001001111100000
str x0, [x0, #32] = 11111001000000000001000000000000

• All devices transfer data

• From memory to memory

• Using external interfaces

Data transfers are a great target

Transferred data may be under attacker’s control

USB

UART

ETH

ROM

SRAM

Flash DDR

CPU

GSM RF

Let’s use it as a Fault Injection target…

memcpy()

• It’s everywhere.

• SW security: Parameters are typically checked (dest, src and n)

• Transferred content itself not considered security critical

PC control with Instruction corruption (ARM32).

80

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b10078 ldm r1!, {r3, r4, r5, r6}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32
10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

00000000 <memcpy>:
0: e92d0070 push {r4, r5, r6}

00000004 <loop>:
4: e8b18078 ldm r1!, {r3, r4, r5, r6, pc}
8: e8a00078 stm r0!, {r3, r4, r5, r6}
c: e2522020 subs r2, r2, #32

10: aafffffb bge 4 <ldmloop>

14: e8bd0070 pop {r4, r5, r6}
18: e12fff1e bx lr

PC set to attacker data. Control flow directly hijacked

Example: USB data transfer (ARM32)

Interface

(USB)

Input

buffer

Command

buffer

Command

handler

Output

buffer

Attacker data being transferred

Destination reg modified to PC

We regularly use this technique…

• [2016]: Bypassing Secure Boot (non-encrypted)

• Bypassing Secure Boot using Fault Injection @ BlackHat EU 2016

• [2017]: Escalating privileges from user to kernel in Linux

• Escalating Privileges in Linux Using Voltage Fault Injection @ FDTC 2017 (academic paper)

• R00ting the Unexploitable using Hardware Fault Injection @ BlueHat v17

• [2019]: Bypassing encrypted secure boot

• Hardening Secure Boot on Embedded Devices @ Blue Hat IL 2019

• [2019]: Taking control of an AUTOSAR based ECU

• Attacking AUTOSAR using Software and Hardware Attacks @ escar USA 2019

https://raelize.com/upload/research/2016/2016_BlackHat-EU_Bypassing-Secure-Boot-Using-Fault-Injection_NT-AS.pdf
https://ieeexplore.ieee.org/document/8167704
https://www.slideshare.net/MSbluehat/kernelfault-r00ting-the-unexploitable-using-hardware-fault-injection
https://www.slideshare.net/CristofaroMune/blue-hat-il-2019-hardening-secure-boot-on-embedded-devices-for-hostile-environments
https://pure.tugraz.at/ws/portalfiles/portal/23511745/Attacking_AUTOSAR_using_Software_and_Hardware_Attacks.pdf

…as of today ☺

• [2019]: Generalizing the technique to (all?) other architectures

• Using Fault Injection to Turn Data Transfers into Arbitrary Execution @ PoC 2019

• [2020]: Bypassed an encrypted Secure Boot (data transfers over DMA) leveraging SRAM persistence

• Look mum, no key! Bypassing Encrypted Secure Boot @ hardwear.io 2020

• [2024]: Bypassing encrypted secure boot:

• using attacker-derived data (and not directly controlled)

• Manipulating ciphertext to force plaintext’s CRC32 to a controlled value

• Getting PC control by glitching a single instruction

• Breaking Espressif’s ESP32 V3: Program Counter Control with Computed Values using Fault Injection @ Usenix WOOT’24

(academic paper)

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf
https://www.youtube.com/watch?v=VLIWdJuHgz0
https://raelize.com/upload/research/2024/woot24-delvaux.pdf

84

More details here

Works on multiple architectures

• We identified multiple variants and techniques

• Yield arbitrary code execution:

• from controlled data only

• By corrupting instruction destination registers

• Sufficiently generic to work across multiple architectures

• Examples:

• Corrupting stored PC (in regs) or SP

• Hijacking jump/call (through registers)

• Corrupting callee saved regs (across function calls)

https://raelize.com/upload/research/2019/2019_PoC_Using-Fault-Injection-to-Turn-Data-Transfers-into-Arbitrary-Execution_CM-NT.pdf

Example: ARMv8 RET instruction

• Used for returning from a function call.

• Return address stored in register (default X30)

• It has the following encoding:

• RET instruction can encode any register (x0 to x30)

Real world example

• Google Bionic’s (LIBC) memcpy

• Copying 16 bytes executes the following code:

• Source data resides in x6 and x7

• Source data is not wiped before RET

• Glitch RET instruction into RET x6 or RET x7:

• Equivalently glitch ldr x6, … to ldr x30, …

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

memcpy:
0:8b020024 add x4, x1, x2
4:8b020005 add x5, x0, x2
8:f100405f cmp x2, #0x10
c:54000229 b.ls 50 <memcpy+0x50
...
50:f100205f cmp x2, #0x8
54:540000e3 b.cc 70 <memcpy+0x70>
58:f9400026 ldr x6, [x1]
5c:f85f8087 ldur x7, [x4, #-8]
60:f9000006 str x6, [x0]
64:f81f80a7 stur x7, [x5, #-8]
68:d65f03c0 ret

PC hijacked from controlled data.

87

A stack overflow…without SW vulns ☺

“Instruction corruption”: Recipe for success

• Identify data transfers you control

• Send sled of pointers

• E.g. Point to your shellcode location

• Glitch during ANY memcpy

• PC control

Attacking Secure Boot

• Payload loaded at img_addr

• Pointer sled after payload

• Glitch during pointer sled transfer

88

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

SW-based countermeasures bypass

• PC value set to img_addr

• Control flow hijacked

• SW-based countermeasures not executed

89

Signature

Flash

(Attacker)

Payload

pointers sled

(img_addr)

90

Very hard to protect against. Applicable to FI-resistant targets.

Key points

• SW-based countermeasures completely ineffective:

• Countermeasures code not executed

• The attack:

• does NOT target checks. Is unrelated to checks location (weak locality)

• Can target ANY data transfer before SW checks

• ROM control flow hijacked:

• Instruction “skipping” only yields bootloader-level access

Observations

• FI SW countermeasures have been designed with an implicit fault model

assumption

• Comes from a partial/incorrect understanding of FI effects on CPU code

execution

• This leaves room to powerful attacks:

• SW-based countermeasures are mostly ineffective

• Exploit mitigation countermeasures may be applicable

91

PoC: ESP32.

92

PC control → Jump to pointer → Print “Falling…”

Test code: Pointers “sled” copy

• We set a specific pointer in Flash:

• 0x4005a980: ROM code printing “Falling back…”

Repeat 4 times

Copy pointers from Flash to SRAM

Trigger (GPIO26): Up

Trigger (GPIO26): Down

Copy pointers from SRAM to SRAM

94

Our Attack window: ~35.60us

Trigger

Results

95

Conclusion.

96

Final considerations

• Identified some gaps in our approach towards Physics and Computing

• Concrete impact in our understanding of the security of modern digital

systems.

• Mostly due to Physics (+ its modeling and approach) not being part of the

regular Computing discussion.

• WE may be missing on:

• A holistic view of systems security

• Understanding of critical scientific fundamentals

• Understanding of threats

• …and powerful attacks

97

Thank you! Any questions!?

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

98

mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

	Default Section
	Slide 1: False Injections: Tales of Physics, Misconceptions and Weird Machines
	Slide 2: Security boundaries
	Slide 3: Notes from Micro-architectural attacks [2017]
	Slide 4: Are we missing anything?
	Slide 5: Walking on thin ice…
	Slide 6: Examples: Natural Phenomena
	Slide 7: Known (attack) techniques
	Slide 8: Interestingly…
	Slide 9: Fault Injection Reference Model (FIRM)
	Slide 10: Physics and Computing
	Slide 11: Consequences
	Slide 12: Goals
	Slide 13: Voltage glitch shape.
	Slide 14: Some widespread statements…
	Slide 15: Assumptions?
	Slide 16: Physics has objections…
	Slide 17: In literature: Shaping the Glitch
	Slide 18: Shaping the Glitch: Research aproach
	Slide 19: Still many questions…
	Slide 20: Let’s perform some experiments!
	Slide 21: Target: Espressif ESP32 (D0WDQ6)
	Slide 22: Espressif ESP32 – Power Scheme
	Slide 23: Raelize ESP32 Training Target v1.2
	Slide 24: Generating a voltage glitch: techniques
	Slide 25: Our setup
	Slide 26: In real life…
	Slide 27: Target code: single add instruction
	Slide 28: Attack Window
	Slide 29: Glitch parameters
	Slide 30: FI campaign
	Slide 31: Distribution: glitch_voltage vs glitch_length
	Slide 32: Some interesting results
	Slide 33: Sharpness vs CPU speed
	Slide 34: We have answers!
	Slide 35: Data analysis.
	Slide 36: Patterns
	Slide 37: Distribution: glitch_voltage vs glitch_delay
	Slide 38: More patterns…
	Slide 39: Is this chip special?
	Slide 40: Why?
	Slide 41: Why do these patterns exist?
	Slide 42: Current understanding
	Slide 43: Idea: Energy-based interpretation
	Slide 44: Glitch profile
	Slide 45: Implications
	Slide 46: Summary
	Slide 47: Modeling faults.
	Slide 48: A fault propagation model
	Slide 49: Notes
	Slide 50: Let’s extend it
	Slide 51: The observer’s challenge
	Slide 52: Notes
	Slide 53: A widespread model (or misconception?) .
	Slide 54: Guess how FI affects code execution…
	Slide 55: Instruction skipping
	Slide 56: Typical attacks
	Slide 57: Example
	Slide 58: Notes
	Slide 59: Attack execution
	Slide 60: SW countermeasures: Multiple checks
	Slide 61: SW countermeasures: Making synchronization harder
	Slide 62: Observations
	Slide 63: A few common beliefs
	Slide 64: Untold assumption
	Slide 65: Is that true?
	Slide 66: Test code: Counter (unrolled loop)
	Slide 67: Results
	Slide 68: Data analysis (1)
	Slide 69: Something weird…
	Slide 70: …and weirder…
	Slide 71: Some hints
	Slide 72: Our instruction (+ encoding)
	Slide 73: Occam’s razor
	Slide 74: Instruction fetch / Bus transfers?
	Slide 75: Weird machines… out of Data transfers.
	Slide 76: Arbitrary code execution (ARM32)
	Slide 77: Instruction corruption
	Slide 78: Data transfers are a great target
	Slide 79: memcpy()
	Slide 80: PC control with Instruction corruption (ARM32).
	Slide 81: Example: USB data transfer (ARM32)
	Slide 82: We regularly use this technique…
	Slide 83: …as of today 
	Slide 84: Works on multiple architectures
	Slide 85: Example: ARMv8 RET instruction
	Slide 86: Real world example
	Slide 87: “Instruction corruption”: Recipe for success
	Slide 88: Attacking Secure Boot
	Slide 89: SW-based countermeasures bypass
	Slide 90: Key points
	Slide 91: Observations
	Slide 92: PoC: ESP32.
	Slide 93: Test code: Pointers “sled” copy
	Slide 94: Trigger
	Slide 95: Results
	Slide 96: Conclusion.
	Slide 97: Final considerations
	Slide 98: Thank you! Any questions!?

