
EL3vated Privileges:
Glitching Google WiFi Pro from Root to EL3

1

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

2

Goals

• Discuss how we got highest privileges (EL3) on the Google Nest WiFi Pro

• Demonstrate Qualcomm's IPQ5018 EMFI characterization

• Show how FI can complement software exploitation

• Provide one example of TEE attacks leveraging Fault Injection

• Also… how to compromise a TEE with a single write

Agenda

• Introduction

• Getting to EMFI:

• Bypassing Secure Boot → Obtaining root privileges

• Building the FI setup

• Qualcomm IPQ5018 SoC EMFI characterization

• The journey to EL3:

• Building R/W primitives with FI

• TEE memory protection (refresher)

• Exploitation

• Conclusion

3

Introduction.

4

Cristofaro Mune

• Co-Founder; Security Researcher

• 20+ years in security

• 15+ years analyzing the security of complex systems and

devices

“in between” SoftwareHardware

5

Our research: https://raelize.com/blog
(Devices, TEEs, Secure Boot, FI,…)

Niek Timmers

• Co-Founder; Security Researcher

• 10+ years experience with analyzing the security of

devices

https://raelize.com/blog

2021: Qualcomm IPQ4018/19 SoC

• Research on Qualcomm IPQ4018/19

• Several vulnerabilities identified in the

TEE (Qualcomm QSEE):

• https://www.qualcomm.com/company/pro

duct-security/bulletins/january-2021-

bulletin

• Affected multiple products from diverse

vendors

• Reserch extension compromised TEE via

Fault Injection as well

6

Cisco Meraki MR33

Linksys EA8300

Netgear Orbi RB20

https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin
https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin
https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin

Today: Google Nest Wifi Pro (“WiFi Pro”)

7

• Wi-Fi 6E router

• Dual-core 64-bit ARM CPU

• 1 GB RAM

• 4 GB flash

• SoC: Qualcomm IPQ5018

• Secure Boot

• Trusted Execution Environment

• ARM Trustzone-based

• Qualcomm Secure Execution

Environment (QSEE)

Our Target

• Firmware version: v3.73.406133

• Latest available is 3.74.447573

• REE:

• U-Boot (U-Boot 2016.01-gc3449fb)

• REE OS: Android (Linux kernel version 5.4.89+)

• A nice hardware overview:

• Google Nest Wifi Pro Bypassing Android Verified Boot from Sergey Volokitin

8

https://www.youtube.com/watch?v=NbUYbuOk0wM

IPQ5018 Boot Process

9

10

No kernel printing. No user shell

Are you serial?

What we know now…

11

PBL

(ROM)

EL3 (Secure)

SBL

U-Boot

REE (Non-Secure) TEE (Secure)

EL1

Getting firmware: EMMC.

12

Removing the case

• Samsung KLM4G1FETE

EMMC

• Placed near the

Qualcomm SoC

• Initial probing

• EMMC signals do not

appear to exposed

13

Signal tracing

• Full signal tracing on PCB:

• After removing EMMC chip

• CLK, CMD, DAT0 identified

14

15

No success

Let’s dump it!

• We attempt dumping “in situ”

• i.e. without removing the chip

• Low Voltage EMMC adapter

• SD card reader:

• Must support 1-bit mode

• E.g. Hama 123900

16

And try to read out the eMMC…

We dig further…

• A CLK signal is likely interfering

with our dump process:

• No external crystal

• We identify a resistor where a

CLK signal seems present:

• Possibly CLK to eMMC from SoC

• We remove it

17

19 partitions

eMMC accessible from Linux

18

Dump’em all

Notable partitions

Making our life easier

• We expose all the relevant signals

via soldered headers:

• Serial

• eMMC

• We can conveniently read/write

eMMC

19

Bypassing Secure Boot.

20

Wifi Pro Secure Boot

• Secure Boot is enabled by eFuses:

• PBL verifies SBL

• Then

• SBL verifies U-Boot

• U-Boot verifies the Kernel

• We confirm by writing a modified boot

image:

• Incorrect signature is detected

• Boot process halted

21

22

We can boot an unsigned image!

Bypassing Secure Boot (CVE-2024-22013)

• U-Boot searches for partition

APPSBLENV:

• But…it doesn’t exist

• Exploit:

• Resize the `crash` partition

• Create APPSBLENV

• Supply our own U-Boot

environment
(source: Hardwear.io NL 2024 presentation by Sergey Volokitin)

https://nvd.nist.gov/vuln/detail/CVE-2024-22013
https://hardwear.io/netherlands-2024/presentation/google_wifi_secure_boot_bypass.pdf

Post exploitation

• Enable kernel printing:

• We pass our bootargs

• Modify “console=“ to

“realize=“

• Get root:

• Modify init.rc in ramdisk

(part of bootimg)

• Repack bootimg

• Flash

23

Root shell

24

Where are we now?

25

PBL

(ROM)

EL3 (Secure)

SBL

U-Boot

REE (Non-Secure) TEE (Secure)

EL1

EL0

Android

Secure Monitor

Root shell

QSEE

Trusted

Application
Full control

How do we get to EL3?

26

We have a plan!

• Glitch SMC request(s) to achieve R/W primitives in EL3 memory:

• We like EMFI

• Bypass TEE memory protection

• Achieve code execution in EL3

27

Glitch an SMC request… with EMFI ?

• Yes!

• See our previous HITB2021 research on the IPQ4018

• This requires:

• Being able to send SMCs to TEE:

• i.e. obtain NS-EL1 privileges (Android kernel or U-Boot)

• Building an EMFI setup

• Characterizing the IPQ5018 SoC

• Identifying faults suitable for our attack

28

https://conference.hitb.org/hitbsecconf2021ams/materials/D1T2%20-%20Exploiting%20QSEE%20the%20Raelize%20Way%20-%20Cristofaro%20Mune%20&%20NIek%20TImmers.pdf

Getting to EMFI.

29

EL1 privileges

• devmem allows us to read/write arbitrary memory addresses

• Requires root privileges, of course

• …but we are root already ☺

• Kernel exec achieved by simply loading a custom LKM (Linux Kernel

Module):

• Make sure this is enabled in `init.rc`

• We created a couple LKMs in the course of this research

30

Building an FI setup

• Some “ingredients” are typically needed:

• regardless of the FI technique (i.e. EMFI here)

• Examples:

• Communication: interacting with the target during the glitch cycle

• Trigger: to time our glitching attempts

• Reset: to restore the target to a known state

31

32

Serial port on the PCB (soldered header)

Communication

Trigger (1)

• We need control of a GPIO

pin to trigger our glitches

• Factory reset button:

• configured as GPIO input in

`init.rc`

• We configure it as an output:

• Still in `init.rc`

33

Trigger (2)

• We want to control the pin directly:

• i.e. not through the GPIO driver

• We probe the GPIO address space

using the `devmem` command:

• We find the address it is mapped to

• We can easily control our trigger by

writing to address `0x01016004`:

• via devmem

• from the LKM

34

Set GPIO pin HIGH

Set GPIO pin LOW

35

Trigger signal is now easily accessible

Trigger (3)

Reset

• The target does not have a

reset button

• We use a solid state relay to

power cycle the target

• We start our shell as soon as

possible:

• To reduce reset cycle timing

36

EMFI glitcher

• Keysight EM-FI transient probe:

• to generate the EM pulse

• Keysight Spider:

• Glitching state machine and

pattern generator

• Keysight EM Probe Station:

• XYZ stage to move the EM

probe

37

* All images in this slide are from Keysight

website

https://www.keysight.com/us/en/products/network-test/device-vulnerability-analysis.html

Wifi Pro EMFI setup

38

…in real life…

39

Qualcomm IPQ5018 EMFI characterization.

40

Characterization (1)

• Allows to check if the SoC is vulnerable

• Identify favorable glitch parameters

• Glitch Location

• Glitch Power

41

Characterization (2)

• Test code executed in LKM (NS-EL1)

• We assume that successful glitches in REE may also affect QSEE code

execution

• Seems reasonable:

• SMCs are handled on the same core of the SMC request

42

Characterization (3) – LKM “Add Sled”

43

Add instruction: adds 1

Macros

Target code

10,000 add instructions (Unrolled loop)

Trigger (GPIO): HIGH

Trigger (GPIO): LOW

Characterization (4)

• Command can be executed by simply loading the LKM:

• 0x2710 == 10,000 (decimal)

44

• A couple of tricks:

• Start shell very early (i.e. “init.rc”) to reduce reboot time penalty

• Turn off Core 1, to avoid execution of concurrent code

Attack timing

45

Attack Window

Glitch parameters

• XY: 10 x 10 Grid

• 45 attempts per location

• Timing (glitch_delay): between 10us and 20us

• EMFI probe power (glitch_power): random between 0 and 100%

46

Results (XY plot)

47

48

We have some interesting faults!

Results (Data analysis)

“instruction skipping”

“instruction corruption”

“Fixing” our EM probe

• We have identified several

locations with successful

glitches

• We “fix” our EM probe

position on a specific location:

• Remove spatial coordinates

from parameters space

• We choose the location with

“instruction skipping” results

49

A journey to EL3.

50

51

Time for reversing!

Status

• We have identified parameters to reliably “skip instruction” via EMFI

• “Instruction skipping” fault model:

• Conditionals, Function return values, Infinite loops, …

• How can we use it? What can we target?

Achieving EL3 R/W primitives.

52

Reversing Secure Monitor

• We extracted the `qsee_a/b` partitionsL

• contain Secure Monitor (EL3) code

• We enumerated and identified all SMC handlers by reverse

engineering

• A couple of SMC handlers got our attentions…

53

io_access_read()/write()

• SMCs `io_access_read/write`

potentially allow for arbitrary

memory R/W:

• Address passed by REE in x2

• The actual operation is performed

by:

• el3_smc_read_from()

• Result in register x1

• el3_smc_write_to()

• No result provided via register

54

El3_smc_read_from()/write_to()

• Both functions rely on

`is_allowed_address` to check

addresses passed by REE

• Note the conditionals:

• Operation is committed only if

`is_allowed_address` returns 1

55

Is_allowed_address()

• `is_allowed_address` checks

the REE-passed address

against a whitelist

• Note the conditionals

• At most 8 comparisons are

performed

• If ANY of those succeeds, then

the address is allowed

56

Attack overview

• Glitch `is_allowed address`…

• …to achieve:

• Arbitrary EL3 memory read: by glitching an `io_access_read` SMC

• Arbitrary EL3 memory write: by glitching an `io_access_write` SMC

• We create an LKM that allows sending arbitrary SMCs

57

How does it work?

58

PBL

(ROM)

EL3 (Secure)

SBL

U-Boot

REE (Non-Secure) TEE (Secure)

EL1

EL0

Kernel

Secure Monitor

Root shell

QSEE

Trusted

Application
Full control

io_access_read() analysis

• Reading a whitelisted address (0x193D100) using our LKM:

• Result: 0x00000017 (register x1)

59

• Reading a non-whitelisted TEE address (0x4ac0000)

• Result: 0x00000000

io_access_read() timing analysis

• Reading a whitelisted address (0x193D100)

60

• Reading a non-allowed TEE address (0x4ac0000) jitter

EMFI campaign

• We attempt reading the start of Secure Monitor (0x4ac00000)

• Success can be easily checked:

• We know the starting bytes of the Secure Monitor code!

• Attack window: ~5us

• Parameters:

• Timing (glitch_delay): between 1ns and 5ns

• EMFI probe power (glitch_power): random between 0 and 100%

61

Results

• Average time to success: 1 successful glitch/104.8 minutes

• Successful glitches are within a 3500ns – 4000ns time window

62

Improving our attack

• Focused parameters:

• Glitch_delay: 3250-3750ns

• Glitch_power: 450-470

• Success rate: 0.1%

• Average time to success: 1 successful glitch/12.5 minutes

63

We have an arbitrary EL3 memory read!

64

io_access_write() analysis

• Let’s try to write a whitelisted address (0x193D100):

65

• Let’s do the same with a non-whitelisted TEE address (0x4ac0000)

66

We could use it to find glitch parameters!

Observations

• `io_access_write()` output does not allow to easily distinguish a

successful write from a failed one:

• we need to read out the targeted memory location to verify a successful glitch

• REE addresses are not allowed, but they are easily readable from

REE.

Example: Successful glitch (REE address)

• Attempt to write 0x41414141 to 0x18140000 (REE address) via io_access_write() SMC

• Address is not whitelisted

• This should normally fail

67

• Let’s read 0x18140000 from REE userspace:

• We confirm that the value has indeed been written → glitch successful

Results

• Same parameters as the focused io_access_read campaign:

• Glitch_delay: 3250-3750ns

• Glitch_power: 450-470

• Success rate: 0.1%

• Average time to success: 1 successful glitch/10 minutes

68

We also have an arbitrary EL3 memory write!

69

Observations

• Having to glitch every (32-bit) write operation is inconvenient.

• How can we extend our control?

• Can a TEE be defeated with a single write?

70

TEE Memory Protection: Qualcomm XPUs.

71

TrustZone Address Space Controller (TZASC)

ARM TZ

core

AMBA AXI3 bus

DDR

TZASC

Touch

TZPC

Fingerprint

DMA

engine

Wi-FI

SoC

Baseband

Modem

Execution units
Bus Masters

Qualcomm XPUs

• They are TZASCs:

• Located on busses

• Protect memory/peripheral access according to:

• Destination address (physical)

• Secure/Non secure access (bus bit)

• …other criteria

• Need to be configured at boot:

• and updated at runtime to reflect any change in TEE memory layout

• Configuration table is held somewhere in EL3 memory

XPUs: blocking REE access

• Attempting to access secure memory from REE causes an exception:

• More details are available in the `tz_log` file

XPU: Logs

Tag

Entry 1: Secure Monitor code

Non secure request (REE)

Attempted access address

76

Let’s find out more!

Notes

• There can be multiple XPUs:

• Likely one per DDR memory controller

• The configuration dumped in the logs must be in EL3 memory

• XPU configuration needs to be applied to hardware XPUs

Finding XPUs base address

• Searching “DDR0_MPU” yields one single result:

• Referenced at 0x4ac99078

77

• Here we find a structure with the XPU registers base address

XPU regs at 0x6E000

XPU registers layout

• Quarkslab research: great source of

information for XPUs

• https://blog.quarkslab.com/analysis-of-

qualcomm-secure-boot-chains.html

• The layout reported seems to apply to

our case:

• XpuControlRegisterSet (0x200 bytes)

• XpuProtectionRegisterSet (0x80 bytes)

• Each protects one Secure Memory region

78

https://blog.quarkslab.com/analysis-of-qualcomm-secure-boot-chains.html
https://blog.quarkslab.com/analysis-of-qualcomm-secure-boot-chains.html

Finding our target

• Secure Monitor:

• protected by the 2nd set of

XpuProtectionRegisterSet (Entry 1)

• Offset of START0 register XPU:

• START0 = 0x6e000 (Base address) +

• 0x200 (XpuControlRegisterSet) +

• 0x80 (XpuProtectionRegisterSet * 1) +

• 0x40 = 0x6e2c0

79

80

We can access Secure Monitor from REE!

Attack plan

• Use our EMFI EL3 arbitrary write to change the value stored in XPU

START0 register (0x6e2c0)

• We set a value that shrinks secure memory:

• leaving part of the Secure Monitor unprotected

• If this works…

EMFI campaign

• Every glitch attempt, we:

• Use io_access_write() to attempt changing XPU START0 for the Secure Monitor

region:

• We change the value from 0x4ac00000 to 0x4ac09000

• Glitch

• Verify our glitch by accessing Secure Monitor physical memory from REE:

• when successful, we read Secure Monitor code

• when failing, we would get an unhandled exception

81

TEE Secure Monitor unprotected!

• Same parameters as the focused io_access_write() campaign:

• Glitch_delay: 3250-3750ns

• Glitch_power: 450-470

• Success rate: 0.1%

• Average time to success: 1 successful glitch/37.5 minutes

82

83

…and we can do it from userspace!

Observation

• XPU does not fully protect Secure Monitor anymore:

• Until the next reboot

• TEE execution continues as intended:

• No issues introduced by the protection removal

• REE can now access the start of Secure Monitor:

• From 0x4ac00000 to 0x4ac09000

Where are we now?

84

PBL

(ROM)

EL3 (Secure)

SBL

U-Boot

REE (Non-Secure) TEE (Secure)

EL1

EL0

Kernel

Secure Monitor

Root shell

QSEE

Trusted

Application
Full control

EL3 code execution.

85

What’s next?

• We can write Secure Monitor code from REE

• Io_access_read/write are quite convenient R/W primitives:

• It would be great to use them without glitching

• We just need to patch their checks:

• This would yield arbitrary R/W from REE via SMCs

86

is_allowed_address()

• Is_allowed_address

returns 1 on success

• We patch it to always

return 1

87

Patch this to return 1

88

EL3 Arbitrary R/W without EMFI glitching

Removing checks

• Patch directly from REE using `devmem`

• Call io_access_read to read the start of Secure Monitor

orr w0, wzr, #1

Writing our shellcode

• We place our shellcode

within the handler for SMC

0x2000109

• The shellcode simply reads

out the content of register

TTBR0_EL3

• Readable from EL3 only

89

Triggering it

• It is sufficient to issue a request for SMC 0x2000109 to execute our

shellcode

90

• The returned value is meaningful:

• It’s the base address of the EL3 MMU page tables

• This confirms arbitrary code execution in EL3

Findings and Mitigations.

91

Findings

• Qualcomm’s IPQ5018 SoC is vulnerable to EMFI:

• Physical access required

• Secure Monitor code is not hardened against fault injection:

• Arbitrary R/W primitives could be obtained by glitching a single check

• XPU registers are not locked

• We could change Secure Memory ranges configured in XPU registers

92

Mitigations

• Our Fault Injection Reference Model (FIRM) helps discussing attacks

and mitigations

93

https://raelize.com/blog/raelize-fi-reference-model/

Conclusion.

94

Take-aways

• Fault Injection can yield powerful attacks when combined with:

• software exploits

• system-level knowledge

• A TEE can be compromised by means of FI

• This research is one of the few examples available

• A TEE can be defeated by a single write

95

Take-aways (2)

• A first EMFI characterization of the Qualcomm IPQ5018 SoC

• And of course…

• We achieved highest privileges (EL3) on the Google Nest WiFi Pro!

96

Thank you! Any questions!?

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid

97

mailto:niek@raelize.com
https://twitter.com/tieknimmers
mailto:cristofaro@raelize.com
https://twitter.com/pulsoid

	Default Section
	Slide 1: EL3vated Privileges: Glitching Google WiFi Pro from Root to EL3
	Slide 2: Goals
	Slide 3: Agenda
	Slide 4: Introduction.
	Slide 5
	Slide 6: 2021: Qualcomm IPQ4018/19 SoC
	Slide 7: Today: Google Nest Wifi Pro (“WiFi Pro”)
	Slide 8: Our Target
	Slide 9: IPQ5018 Boot Process
	Slide 10: Are you serial?
	Slide 11: What we know now…
	Slide 12: Getting firmware: EMMC.
	Slide 13: Removing the case
	Slide 14: Signal tracing
	Slide 15: Let’s dump it!
	Slide 16: We dig further…
	Slide 17: eMMC accessible from Linux
	Slide 18: Notable partitions
	Slide 19: Making our life easier
	Slide 20: Bypassing Secure Boot.
	Slide 21: Wifi Pro Secure Boot
	Slide 22: Bypassing Secure Boot (CVE-2024-22013)
	Slide 23: Post exploitation
	Slide 24: Root shell
	Slide 25: Where are we now?
	Slide 26: How do we get to EL3?
	Slide 27: We have a plan!
	Slide 28: Glitch an SMC request… with EMFI ?
	Slide 29: Getting to EMFI.
	Slide 30: EL1 privileges
	Slide 31: Building an FI setup
	Slide 32: Communication
	Slide 33: Trigger (1)
	Slide 34: Trigger (2)
	Slide 35: Trigger (3)
	Slide 36: Reset
	Slide 37: EMFI glitcher
	Slide 38: Wifi Pro EMFI setup
	Slide 39: …in real life…
	Slide 40: Qualcomm IPQ5018 EMFI characterization.
	Slide 41: Characterization (1)
	Slide 42: Characterization (2)
	Slide 43: Characterization (3) – LKM “Add Sled”
	Slide 44: Characterization (4)
	Slide 45: Attack timing
	Slide 46: Glitch parameters
	Slide 47: Results (XY plot)
	Slide 48: Results (Data analysis)
	Slide 49: “Fixing” our EM probe
	Slide 50: A journey to EL3.
	Slide 51: Status
	Slide 52: Achieving EL3 R/W primitives.
	Slide 53: Reversing Secure Monitor
	Slide 54: io_access_read()/write()
	Slide 55: El3_smc_read_from()/write_to()
	Slide 56: Is_allowed_address()
	Slide 57: Attack overview
	Slide 58: How does it work?
	Slide 59: io_access_read() analysis
	Slide 60: io_access_read() timing analysis
	Slide 61: EMFI campaign
	Slide 62: Results
	Slide 63: Improving our attack
	Slide 64: We have an arbitrary EL3 memory read!
	Slide 65: io_access_write() analysis
	Slide 66: Observations
	Slide 67: Example: Successful glitch (REE address)
	Slide 68: Results
	Slide 69: We also have an arbitrary EL3 memory write!
	Slide 70: Observations
	Slide 71: TEE Memory Protection: Qualcomm XPUs.
	Slide 72: TrustZone Address Space Controller (TZASC)
	Slide 73: Qualcomm XPUs
	Slide 74: XPUs: blocking REE access
	Slide 75: XPU: Logs
	Slide 76: Notes
	Slide 77: Finding XPUs base address
	Slide 78: XPU registers layout
	Slide 79: Finding our target
	Slide 80: Attack plan
	Slide 81: EMFI campaign
	Slide 82: TEE Secure Monitor unprotected!
	Slide 83: Observation
	Slide 84: Where are we now?
	Slide 85: EL3 code execution.
	Slide 86: What’s next?
	Slide 87: is_allowed_address()
	Slide 88: Removing checks
	Slide 89: Writing our shellcode
	Slide 90: Triggering it
	Slide 91: Findings and Mitigations.
	Slide 92: Findings
	Slide 93: Mitigations
	Slide 94: Conclusion.
	Slide 95: Take-aways
	Slide 96: Take-aways (2)
	Slide 97: Thank you! Any questions!?

