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Goals

• Discuss how we got highest privileges (EL3) on the Google Nest WiFi Pro

• Demonstrate Qualcomm's IPQ5018 EMFI characterization

• Show how FI can complement software exploitation

• Provide one example of TEE attacks leveraging Fault Injection

• Also… how to compromise a TEE with a single write



Agenda

• Introduction

• Getting to EMFI:

• Bypassing Secure Boot → Obtaining root privileges

• Building the FI setup

• Qualcomm IPQ5018 SoC EMFI characterization

• The journey to EL3:

• Building R/W primitives with FI

• TEE memory protection (refresher)

• Exploitation

• Conclusion
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Introduction.
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Cristofaro Mune

• Co-Founder; Security Researcher

• 20+ years in security

• 15+ years analyzing the security of complex systems and 

devices

“in between” SoftwareHardware
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Our research: https://raelize.com/blog
(Devices, TEEs, Secure Boot, FI,…)

Niek Timmers

• Co-Founder; Security Researcher

• 10+ years experience with analyzing the security of 

devices

https://raelize.com/blog


2021: Qualcomm IPQ4018/19 SoC

• Research on Qualcomm IPQ4018/19 

• Several vulnerabilities identified in the 

TEE (Qualcomm QSEE):

• https://www.qualcomm.com/company/pro

duct-security/bulletins/january-2021-

bulletin 

• Affected multiple products from diverse 

vendors

• Reserch extension compromised TEE via 

Fault Injection as well
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Cisco Meraki MR33

Linksys EA8300

Netgear Orbi RB20

https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin
https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin
https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin


Today: Google Nest Wifi Pro (“WiFi Pro”)
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• Wi-Fi 6E router

• Dual-core 64-bit ARM CPU

• 1 GB RAM

• 4 GB flash

• SoC: Qualcomm IPQ5018

• Secure Boot

• Trusted Execution Environment

• ARM Trustzone-based

• Qualcomm Secure Execution 

Environment (QSEE)



Our Target

• Firmware version: v3.73.406133

• Latest available is 3.74.447573

• REE: 

• U-Boot (U-Boot 2016.01-gc3449fb)

• REE OS: Android (Linux kernel version 5.4.89+)

• A nice hardware overview:

• Google Nest Wifi Pro Bypassing Android Verified Boot from Sergey Volokitin
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https://www.youtube.com/watch?v=NbUYbuOk0wM


IPQ5018 Boot Process
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No kernel printing. No user shell

Are you serial?



What we know now…
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(ROM)
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SBL

U-Boot

REE (Non-Secure) TEE (Secure)

EL1



Getting firmware: EMMC.
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Removing the case

• Samsung KLM4G1FETE 

EMMC

• Placed near the 

Qualcomm SoC

• Initial probing

• EMMC signals do not 

appear to exposed

13



Signal tracing

• Full signal tracing on PCB:

• After removing EMMC chip

• CLK, CMD, DAT0 identified
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No success

Let’s dump it!

• We attempt dumping “in situ”

• i.e. without removing the chip

• Low Voltage EMMC adapter

• SD card reader:

• Must support 1-bit mode

• E.g. Hama 123900
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And try to read out the eMMC…

We dig further…

• A CLK signal is likely interfering 

with our dump process:

• No external crystal

• We identify a resistor where a 

CLK signal seems present:

• Possibly CLK to eMMC from SoC

• We remove it
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19 partitions

eMMC accessible from Linux
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Dump’em all

Notable partitions



Making our life easier

• We expose all the relevant signals 

via soldered headers:

• Serial

• eMMC

• We can conveniently read/write 

eMMC
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Bypassing Secure Boot.
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Wifi Pro Secure Boot

• Secure Boot is enabled by eFuses:

• PBL verifies SBL

• Then

• SBL verifies U-Boot

• U-Boot verifies the Kernel

• We confirm by writing a modified boot 

image:

• Incorrect signature is detected

• Boot process halted
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We can boot an unsigned image!

Bypassing Secure Boot (CVE-2024-22013)

• U-Boot searches for partition 

APPSBLENV:

• But…it doesn’t exist

• Exploit:

• Resize the `crash` partition

• Create APPSBLENV

• Supply our own U-Boot 

environment
(source: Hardwear.io NL 2024  presentation by Sergey Volokitin)

https://nvd.nist.gov/vuln/detail/CVE-2024-22013
https://hardwear.io/netherlands-2024/presentation/google_wifi_secure_boot_bypass.pdf


Post exploitation

• Enable kernel printing:

• We pass our bootargs

• Modify “console=“ to 

“realize=“

• Get root:

• Modify init.rc in  ramdisk 

(part of bootimg)

• Repack bootimg

• Flash
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Root shell
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Where are we now?
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(ROM)
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SBL

U-Boot
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How do we get to EL3?
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We have a plan!

• Glitch SMC request(s) to achieve R/W primitives in EL3 memory:

• We like EMFI 

• Bypass TEE memory protection

• Achieve code execution in EL3
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Glitch an SMC request… with EMFI ?

• Yes! 

• See our previous HITB2021 research  on the IPQ4018 

• This requires:

• Being able to send SMCs to TEE:

• i.e. obtain NS-EL1 privileges (Android kernel or U-Boot)

• Building an EMFI setup

• Characterizing the IPQ5018 SoC

• Identifying faults suitable for our attack
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https://conference.hitb.org/hitbsecconf2021ams/materials/D1T2%20-%20Exploiting%20QSEE%20the%20Raelize%20Way%20-%20Cristofaro%20Mune%20&%20NIek%20TImmers.pdf


Getting to EMFI.
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EL1 privileges

• devmem allows  us to read/write arbitrary memory addresses

• Requires root privileges, of course

• …but we are root already ☺

• Kernel exec achieved by simply loading a custom LKM (Linux Kernel 

Module):

• Make sure this is enabled in `init.rc`

• We created a couple LKMs in the course of this research
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Building an FI setup

• Some “ingredients” are typically needed:

• regardless of the FI technique (i.e. EMFI here)

• Examples:

• Communication: interacting with the target during the glitch cycle

• Trigger: to time our glitching attempts

• Reset: to restore the target to a known state
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Serial port on the PCB (soldered header)

Communication



Trigger (1)

• We need control of a GPIO 

pin to trigger our glitches

• Factory reset button:

• configured as GPIO input in 

`init.rc`

• We configure it as an output:

• Still in `init.rc`
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Trigger (2)

• We want to control the pin directly:

• i.e. not through the GPIO driver

• We probe the GPIO address space 

using the `devmem` command:

• We find the address it is mapped to

• We can easily control our trigger by 

writing to address `0x01016004`:

• via devmem

• from the LKM
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Set GPIO pin HIGH

Set GPIO pin LOW
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Trigger signal is now easily accessible

Trigger (3)



Reset

• The target does not have a 

reset button

• We use a solid state relay to 

power cycle the target

• We start our shell as soon as 

possible:

• To reduce reset cycle timing
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EMFI glitcher

• Keysight EM-FI transient probe:

• to generate the EM pulse

• Keysight Spider:

• Glitching state machine and 

pattern generator

• Keysight EM Probe Station:

• XYZ stage to move the EM 

probe
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* All images in this slide are from Keysight 

website

https://www.keysight.com/us/en/products/network-test/device-vulnerability-analysis.html


Wifi Pro EMFI setup
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…in real life…
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Qualcomm IPQ5018 EMFI characterization.
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Characterization (1)

• Allows to check if the SoC is vulnerable

• Identify favorable glitch parameters

• Glitch Location

• Glitch Power
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Characterization (2)

• Test code executed in LKM (NS-EL1)

• We assume that successful glitches in REE may also affect QSEE code 

execution

• Seems reasonable:

• SMCs are handled on the same core of the SMC request
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Characterization (3) – LKM “Add Sled”
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Add instruction: adds 1

Macros

Target code

10,000 add instructions (Unrolled loop)

Trigger (GPIO): HIGH

Trigger (GPIO): LOW



Characterization (4)

• Command can be executed by simply loading the LKM:

• 0x2710 == 10,000 (decimal)
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• A couple of tricks:

• Start shell very early (i.e. “init.rc”) to reduce reboot time penalty

• Turn off Core 1, to avoid execution of concurrent code



Attack timing
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Attack Window



Glitch parameters

• XY: 10 x 10 Grid

• 45 attempts per location

• Timing (glitch_delay): between 10us and 20us

• EMFI probe power (glitch_power): random between 0 and 100%
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Results (XY plot)
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We have some interesting faults!

Results (Data analysis)

“instruction skipping”

“instruction corruption”



“Fixing” our EM probe

• We have identified several 

locations with successful 

glitches

• We “fix” our EM probe 

position on a specific location:

• Remove spatial coordinates 

from parameters space

• We choose the location with 

“instruction skipping” results
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A journey to EL3.
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Time for reversing!

Status

• We have identified parameters to reliably “skip instruction” via EMFI

• “Instruction skipping” fault model:

• Conditionals, Function return values, Infinite loops, …

• How can we use it? What can we target?



Achieving EL3 R/W primitives.
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Reversing Secure Monitor

• We extracted the `qsee_a/b` partitionsL

• contain Secure Monitor (EL3) code

• We enumerated and identified all SMC handlers by reverse 

engineering

• A couple of SMC handlers got our attentions…
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io_access_read()/write()

• SMCs `io_access_read/write`  

potentially allow for arbitrary 

memory R/W:

• Address passed by REE in x2

• The actual operation is performed 

by:

• el3_smc_read_from()

• Result in register x1

• el3_smc_write_to()

• No result provided via register
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El3_smc_read_from()/write_to()

• Both functions rely on 

`is_allowed_address` to check 

addresses passed by REE

• Note the conditionals:

• Operation is committed only if 

`is_allowed_address` returns 1
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Is_allowed_address()

• `is_allowed_address` checks 

the REE-passed address 

against a whitelist

• Note the conditionals

• At most 8 comparisons are 

performed

• If ANY of those succeeds, then 

the address is allowed
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Attack overview

• Glitch `is_allowed address`…

• …to achieve:

• Arbitrary EL3 memory read: by glitching an `io_access_read` SMC

• Arbitrary EL3 memory write: by glitching an `io_access_write` SMC

• We create an LKM that allows sending arbitrary SMCs
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How does it work?
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io_access_read() analysis

• Reading a whitelisted address (0x193D100) using our LKM:

• Result: 0x00000017 (register x1)
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• Reading a non-whitelisted TEE address (0x4ac0000)

• Result: 0x00000000



io_access_read() timing analysis

• Reading a whitelisted address (0x193D100)
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• Reading a non-allowed TEE address (0x4ac0000) jitter



EMFI campaign

• We attempt reading the start of Secure Monitor (0x4ac00000)

• Success can be easily checked:

• We know the starting bytes of the Secure Monitor code!

• Attack window: ~5us

• Parameters:

• Timing (glitch_delay): between 1ns and 5ns

• EMFI probe power (glitch_power): random between 0 and 100%
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Results

• Average time to success: 1 successful glitch/104.8 minutes

• Successful glitches are within a 3500ns – 4000ns time window
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Improving our attack

• Focused parameters: 

• Glitch_delay: 3250-3750ns

• Glitch_power: 450-470

• Success rate: 0.1%

• Average time to success: 1 successful glitch/12.5 minutes
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We have an arbitrary EL3 memory read!
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io_access_write() analysis

• Let’s try to write a whitelisted address (0x193D100):
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• Let’s do the same with a non-whitelisted TEE address (0x4ac0000)
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We could use it to find glitch parameters!

Observations

• `io_access_write()` output does not allow to easily distinguish a 

successful write from a failed one:

• we need to read out the targeted memory location to verify a successful glitch

• REE addresses are not allowed, but they are easily readable from 

REE.



Example: Successful glitch (REE address)

• Attempt to write 0x41414141 to 0x18140000 (REE address) via io_access_write() SMC

• Address is not whitelisted

• This should normally fail
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• Let’s read 0x18140000 from REE userspace:

• We confirm that the value has indeed been written → glitch successful



Results

• Same parameters as the focused io_access_read campaign: 

• Glitch_delay: 3250-3750ns

• Glitch_power: 450-470

• Success rate: 0.1%

• Average time to success: 1 successful glitch/10 minutes
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We also have an arbitrary EL3 memory write!
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Observations

• Having to glitch every (32-bit) write operation is inconvenient.

• How can we extend our control?

• Can a TEE be defeated with a single write?
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TEE Memory Protection: Qualcomm XPUs.
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TrustZone Address Space Controller (TZASC)

ARM TZ 

core

AMBA AXI3 bus

DDR

TZASC

Touch

TZPC

Fingerprint

DMA 

engine

Wi-FI

SoC

Baseband

Modem

Execution units
Bus Masters



Qualcomm XPUs

• They are TZASCs:

• Located on busses

• Protect memory/peripheral access according to:

• Destination address (physical)

• Secure/Non secure access (bus bit)

• …other criteria

• Need to be configured at boot:

• and updated at runtime to reflect any change in TEE memory layout

• Configuration table is held somewhere in EL3 memory 



XPUs: blocking REE access

• Attempting to access secure memory from REE causes an exception:

• More details are available in the `tz_log` file



XPU: Logs

Tag

Entry 1: Secure Monitor code

Non secure request (REE)

Attempted access address
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Let’s find out more!

Notes

• There can be multiple XPUs:

• Likely one per DDR memory controller

• The configuration dumped in the logs must be in EL3 memory

• XPU configuration needs to be applied to hardware XPUs



Finding XPUs base address

• Searching “DDR0_MPU” yields one single result:

• Referenced at 0x4ac99078
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• Here we find a structure with the XPU registers base address

XPU regs at 0x6E000



XPU registers layout

• Quarkslab research: great source of 

information for XPUs

• https://blog.quarkslab.com/analysis-of-

qualcomm-secure-boot-chains.html

• The layout reported seems to apply to 

our case:

• XpuControlRegisterSet (0x200 bytes)

• XpuProtectionRegisterSet (0x80 bytes)

• Each protects one Secure Memory region
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https://blog.quarkslab.com/analysis-of-qualcomm-secure-boot-chains.html
https://blog.quarkslab.com/analysis-of-qualcomm-secure-boot-chains.html


Finding our target

• Secure Monitor:

• protected by the 2nd set of 

XpuProtectionRegisterSet (Entry 1)

• Offset of START0 register XPU:

• START0 = 0x6e000 (Base address) + 

• 0x200 (XpuControlRegisterSet) +

• 0x80 (XpuProtectionRegisterSet * 1) +

• 0x40 = 0x6e2c0
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We can access Secure Monitor from REE!

Attack plan

• Use our EMFI EL3 arbitrary write to change the value stored in XPU 

START0 register (0x6e2c0)

• We set a value that shrinks secure memory:

• leaving part of the Secure Monitor unprotected

• If this works…



EMFI campaign

• Every glitch attempt, we:

• Use io_access_write() to attempt changing XPU START0 for the Secure Monitor 

region:

• We change the value from 0x4ac00000 to 0x4ac09000

• Glitch

• Verify our glitch by accessing Secure Monitor physical memory from REE:

• when successful, we read Secure Monitor code

• when failing, we would get an unhandled exception
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TEE Secure Monitor unprotected!

• Same parameters as the focused io_access_write() campaign: 

• Glitch_delay: 3250-3750ns

• Glitch_power: 450-470

• Success rate: 0.1%

• Average time to success: 1 successful glitch/37.5 minutes
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…and we can do it from userspace!

Observation

• XPU does not fully protect Secure Monitor anymore:

• Until the next reboot

• TEE execution continues as intended:

• No issues introduced by the protection removal

• REE can now access the start of Secure Monitor:

• From 0x4ac00000 to 0x4ac09000



Where are we now?
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EL3 code execution.
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What’s next?

• We can write Secure Monitor code from REE

• Io_access_read/write are quite convenient R/W primitives:

• It would be great to use them without glitching

• We just need to patch their checks:

• This would yield arbitrary R/W from REE via SMCs
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is_allowed_address()

• Is_allowed_address 

returns 1 on success

• We patch it to always 

return 1

87

Patch this to return 1
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EL3 Arbitrary R/W without EMFI glitching

Removing checks

• Patch directly from REE using `devmem`

• Call io_access_read to read the start of Secure Monitor

orr w0, wzr, #1



Writing our shellcode

• We place our shellcode 

within the handler for SMC 

0x2000109

• The shellcode simply reads 

out the content of register 

TTBR0_EL3

• Readable from EL3 only
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Triggering it

• It is sufficient to issue a request for SMC 0x2000109 to execute our 

shellcode

90

• The returned value is meaningful:

• It’s the base address of the EL3 MMU page tables

• This confirms arbitrary code execution in EL3



Findings and Mitigations.
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Findings

• Qualcomm’s IPQ5018 SoC is vulnerable to EMFI:

• Physical access required

• Secure Monitor code is not hardened against fault injection:

• Arbitrary R/W primitives could be obtained by glitching a single check

• XPU registers are not locked

• We could change Secure Memory ranges configured in XPU registers 

92



Mitigations

• Our Fault Injection Reference Model (FIRM) helps discussing attacks 

and mitigations
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https://raelize.com/blog/raelize-fi-reference-model/


Conclusion.
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Take-aways

• Fault Injection can yield powerful attacks when combined with:

• software exploits 

• system-level knowledge

• A TEE can be compromised by means of FI

• This research is one of the few examples available

• A TEE can be defeated by a single write
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Take-aways (2)

• A first EMFI characterization of the Qualcomm IPQ5018 SoC

• And of course…

• We achieved highest privileges (EL3) on the Google Nest WiFi Pro!
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Thank you! Any questions!?

Niek Timmers

niek@raelize.com

@tieknimmers

Cristofaro Mune

cristofaro@raelize.com

@pulsoid
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